Math, asked by nuks228, 7 months ago

expand the following log root x^3/y^2

Answers

Answered by Teluguwala
0

Given,

 \:

 \displaystyle \sf \:  \:  :  \:  \implies \:  \:  \: log \:  \sqrt{ \frac{ {x}^{3} }{ {y}^{2} } }

 \:

 \displaystyle \sf \:  \:  :  \:  \implies \:  \:  \: log \:  \frac{ \sqrt{{x}^{3} }}{  \sqrt{{y}^{2} } }

 \:

 \displaystyle \sf \:  \:  :  \:  \implies \:  \:  \: log \:   \frac{ {x}^{3 \frac{1}{2} } }{  {y}^{2 \frac{1}{2} }  }

 \:

 \displaystyle \sf \:  \:  :  \:  \implies \:  \:  \: log \:   ({x)}^{3 \frac{1}{2}  } -  log \:   ({y)}^{2 \frac{1}{2} }

 \:

 \displaystyle \sf \:  \:  :  \:  \implies \:  \:  \: log \:   ({x)}^{ \frac{3}{2}  } -  log \:   ({y)}^{ \:  \cancel\frac{2}{2} }

 \:

 \displaystyle \sf \:  \:  :  \:  \implies \:  \:  \: log \:   ({x)}^{ \frac{3}{2}  } -  log \:   ({y)}

 \:

 \displaystyle \bf \:  \:  :  \:  \implies \:  \:  \:  \frac{3}{2}  \: log \:   ({x)} -  log \:   ({y)}

 \:

Similar questions