Math, asked by manojwishwakarm1245, 1 year ago

Expand the following using suitable identites :(x+2y+4z)2, (1/4a -1/2b +1)2,(2x+ 3y+2z)2

Answers

Answered by hukam0685
1

 {(x + 2y + 4z)}^{2}  =  {x}^{2}  + 4 {y}^{2}  + 16 {z}^{2}  + 2x(2y) + 2(2y)(4z) + 2x(4z) \\  =  {x }^{2}  + 4 {y}^{2}  + 16 {z}^{2}  + 4xy + 16yz + 8xz
(  { \frac{1}{4} a -  \frac{1}{2} b + 1)}^{2}   \\ =  \frac{1}{16}  {a}^{2}  +  \frac{1}{4}  {b}^{2}  + 1 + 2( \frac{1}{4} )a( \frac{ - 1}{2}) b + 2 (\frac{ - 1}{2}) b(1) + 2 \frac{1}{4} a(1) \\  = \frac{1}{16}  {a}^{2}  +  \frac{1}{4}  {b}^{2}  + 1  -  \frac{1}{4} ab - b +  \frac{1}{2}a
( {2x + 3y + 2z)}^{2}  \\  = 4 {x}^{2} + 9 {y}^{2}   + 4 {z}^{2}  + 2(2x)(3y) + 2(3y)(2z) + 2(2x)(2z) \\  = 4 {x}^{2} + 9 {y}^{2}   + 4 {z}^{2}  + 12xy + 12yz + 8xz

sowmiyayahoocom: sir plzz help me
sowmiyayahoocom: in graph
Similar questions