expand the log x3y3z4
Answers
Answered by
3
❇️❇️❇️❇️❇️❇️❇️❇️❇️❇️❇️
\log \sqrt{x^2y^3y^4}
= \log \sqrt{x^2y^{3+4}} (using formula x^m*x^n=x^{m+n} )
= \log \sqrt{x^2y^7}
simplify radical
= \log (xy^3\sqrt{y})
= \log (xy^3y^{\frac{1}{2}})
(because square root is same as exponent 1/2)
Now apply formula log(mn)=log(m)+log(n)
= \log (x) + \log (y^3) + \log (y^{\frac{1}{2}})
Apply formula \log(x^m)=m \log(x)
= \log (x) + \log (y^3) + \log (y^{\frac{1}{2}})
= \log (x) +3 \log (y) + \frac{1}{2} \log (y)
= \log (x) + \frac{7}{2} \log (y)
Hence final answer is \log (x) +\frac{7}{2} \log (y)
Similar questions