Math, asked by ƁƦƛƖƝԼƳƜƛƦƦƖƠƦ, 6 months ago

expand this,
(2x + 2)(2x + 3)
please dont spam​

Answers

Answered by sudharshan1404
7

Answer:

 \bold \red{ \underline{correct \: question}}

(2x + 2)(2x + 3)

 \bold{ \red{ \underline{we \: need \: to \: use \: the \: identity}}}

(x + a)(x + b) =  {x}^{2}  + x(a + b) + ab

 \bold{ \red{ \underline{let \: us \: solve}}}

 {2x}^{2}  + 2x(2 + 3) + 2 \times 3

 =  >  {4x}^{2}  + 2x(5) + 6

 =  > 4 {x}^{2}  + 10x + 6

 \bold{ \red{ \underline{additional \: information}}}

 {(x + y)}^{2}  =  {x}^{2}  + 2xy +  {y}^{2}

 {(x - y)}^{2}  =  {x}^{2}   - 2xy +  {y}^{2}

(x + y) \times (x - y) = ( {x}^{2})  -  ({y}^{2} )

Answered by Anonymous
7

Your Question.

☞(2x + 2)(2x + 3)

Identity Must be use

☞ (x + a)(x + b) =  {x}^{2} + x(a + b) + ab

Solution

 {2x}^{2}  + 2x(2 + 3) + 2 \times 3

☞ \:  {4x}^{2}  + 2x(5) + 6

☞ \:  {4x}^{2}  + 10x + 6

Hope this will help you...

Similar questions