Math, asked by abdulbpkr2004, 1 year ago

expand using identities (2x-3y+5z)2

Answers

Answered by Anonymous
137
given :- ( 2x - 3y + 5z )²


by using identity ( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ac

here a = 2x, b = -3y and c = 5z

now let us solve it..

( 2x - 3y + 5z ) = (2x)² + (-3y)² + (5z)² + 2 (2x) (-3y) + 2 (-3y)(5z) + 2 (2x) (5z)

= 4x² + 9y² + 25z² - 12xy - 30yz + 20xz

HOPE THIS HELPS..!!

abdulbpkr2004: hello
Anonymous: 4x² = (2x)² , 9y² = (3y)² and 16z² = (4z)² => (2x)² + (3y)² + (-4z)² + 2(2x)(3y) + 2(3y)(-4z) + 2(2x)(-4z) => ( 2x + 3y - 4z )²
abdulbpkr2004: tnx
Anonymous: wlcm
abdulbpkr2004: one
abdulbpkr2004: more
abdulbpkr2004: Using factor theorem, factorize the polynomial x^4+x^3-7x^2-x+6
Anonymous: i don't know
abdulbpkr2004: ok
abdulbpkr2004: tnx
Answered by payalchatterje
3

Answer:

After expansion answer is   4 {x}^{2}  + 9 {y}^{2}  + 25 {z}^{2}  + 20xz - 30yz - 12xy

Step-by-step explanation:

Given,

 {(2x - 3y + 5z)}^{2}

We are comparing it with

 {(a + b)}^{2}

So,

a = 2x - 3y \\ b = 5z

We know,

 {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab

So,

 {(2x - 3y + 5z)}^{2}  \\=  {(2x - 3y)}^{2}   + 2.(2x - 3y).5z +  {(5z)}^{2}

  \\ =   {(2x)}^{2}  - 2.2x.3y +  {(3y)}^{2}+ 20xz - 30yz + 25 {z}^{2}  = 4 {x}^{2}   +  9 {y}^{2}  - 12xy + 20xz - 30yz + 25 {z}^{2}

 = 4 {x}^{2}  + 9 {y}^{2}  + 25 {z}^{2}  + 20xz - 30yz - 12xy

This is a problem of Algebra,

Some important formulas of Algebra,

(a + b)² = a² + 2ab + b²

(a − b)² = a² − 2ab − b²

(a + b)³ = a³ + 3a²b + 3ab² + b³

(a - b)³ = a³ - 3a²b + 3ab² - b³

a³ + b³ = (a + b)³ − 3ab(a + b)

a³ - b³ = (a -b)³ + 3ab(a - b)

{a}^{2}  -  {b}^{2}  = (a + b)(a - b)\\{a}^{2}  +  {b}^{2}  =  {(a + b)}^{2}  - 2ab\\{a}^{2}  +  {b}^{2}  =  {(a - b)}^{2}  + 2ab\\{a}^{3}  -  {b}^{3}  = (a  -  b)( {a}^{2}   +  ab +  {b}^{2} )\\{a}^{3}   +   {b}^{3}  = (a + b)( {a}^{2}    -   ab +  {b}^{2} )

Similar questions