Math, asked by nandanasuli, 3 months ago

expand using identity (3a+b-5c)^2​

Answers

Answered by telex
213

Question :-

Expand using identity :-

 \bf {(3a + b - 5c)}^{2}

____________________

Solution :-

The identity used here is :-

 \boxed{ \sf {(a + b - c)}^{2}  =  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2(ab - bc - ca)}

Calculation :-

 \sf :  \implies {(3a + b - 5c)}^{2}  =  {(3a)}^{2}  +  {(b)}^{2}  +  {(5c)}^{2}   + 2((3a \times b) - (b \times  - 5c) - ( - 5c \times 3a)) \\   = \sf9 {a}^{2}  +  {b}^{2}  + 25 {c}^{2}  + 2(3ab  + 5bc + 15ac) \\   \sf=    \boxed{\boxed{  \bf \red{{9a}^{2}  +  {b}^{2}  + 25 {c}^{2}  + 6ab + 10bc + 30ac}}}

____________________

Final Answer :-

  \boxed{\boxed{   \sf\red{{9a}^{2}  +  {b}^{2}  + 25 {c}^{2}  + 6ab + 10bc + 30ac}}}

____________________

Note :-

Please scroll from right to left to see the whole solution.

Similar questions