expand using identity
Answers
Answered by
111
Formula: (a-b-c)2 =a2+b2+c2-2ab-2ac+2bc
Given Values, a = 2x b = -3y c = -4z
Substitute the given values in the formula,
= (2x)2 + (-3y)2 + (-4z)2 - 2((2x)(-3y)) - 2((2x)(-4z)) + 2((-3y)(-4z))
= 4x2 + 9y2 + 16z2 + 12xy + 16xz + 24yz
HOPE IT HELPS YOU!!
MARK ME AS BRAINLIEST PLZZ!!
Given Values, a = 2x b = -3y c = -4z
Substitute the given values in the formula,
= (2x)2 + (-3y)2 + (-4z)2 - 2((2x)(-3y)) - 2((2x)(-4z)) + 2((-3y)(-4z))
= 4x2 + 9y2 + 16z2 + 12xy + 16xz + 24yz
HOPE IT HELPS YOU!!
MARK ME AS BRAINLIEST PLZZ!!
Destroyer48:
srry friend
Answered by
80
Hi friend
--------------
Your answer
--------------------
EXPANSION
--------------------
using identity => (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
(2x + 3y - 4z)²
=> (2x)² + (3y)² + ( - 4z)² + 2[ (2x).(3y) + (3y).(- 4z) + (- 4z).(2x)]
=> 4x² + 9y² + 16z² + 2(6xy - 12yz - 8zx)
=> 4x² + 9y² + 16z² + 12xy - 24yz - 16zx
HOPE IT HELPS
--------------
Your answer
--------------------
EXPANSION
--------------------
using identity => (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
(2x + 3y - 4z)²
=> (2x)² + (3y)² + ( - 4z)² + 2[ (2x).(3y) + (3y).(- 4z) + (- 4z).(2x)]
=> 4x² + 9y² + 16z² + 2(6xy - 12yz - 8zx)
=> 4x² + 9y² + 16z² + 12xy - 24yz - 16zx
HOPE IT HELPS
Similar questions