Math, asked by ANMOLHUNTER, 3 months ago

Expand using suitable identity
(0.9p-0.5g)²

Answers

Answered by Bhartiswaran
1

Answer:

Through the identity

(a-b)² = a²+b²-2ab

→ (0.9p)²+(0.5g)²-2(0.9p)(0.5g)

→0.81p² + 0.25g² - 0.9pg

..........................................................................

If it satisfies you then

Please mark me as a brainelist

Answered by Rubellite
9

\Large{\underbrace{\sf{\red{Required\:Solution:}}}}

(0.9p-0.5g)²

Solution - \displaystyle{\sf{ (0.9p-0.5g)^{2}}}

  • Using Identity - (α-b)² = α²-2αb+b²

\longrightarrow{\sf{ (0.9p)^{2} - 2\times (0.9p)\times (0.5g) + (0.5g)^{2}}}

\longrightarrow{\sf{ 0.81p^{2} - (1.8p)\times (0.5g)+0.25g^{2}}}

\large\implies{\boxed{\sf{\red{ 0.81p^{2} - 0.9pg + 0.25g^{2}}}}}

_____________

\Large{\underbrace{\sf{\red{Explore\:More!}}}}

Algebrαic identity - An αlgebrαic identity is αn equαlity thαt holds for αny vαlues of its vαriαbles.

There αre some αlgebrαic identities —

  • (a+b)² = a² + 2ab + b²
  • (a-b)² = a² - 2ab + b²
  • a²-b² = (a-b)(a+b)
  • a²+b² = (a+b)² - 2ab
  • (x+a)(x+b) = x² + (a+b)x + ab
  • (a+b)³ = a³ + b³ + 3ab(a+b)
  • (a-b)³ = a³ - b³ - 3ab(a-b)
  • a³+b³ = (a+b)³-3ab(a+b)

⠀⠀⠀⠀⠀⠀⠀= (a+b) (a²- ab + b²)

  • a³-b³ = (a-b)³+3ab(a-b)

⠀⠀⠀⠀⠀⠀⠀= (a-b) (a² + ab + b²)

  • (a+b+c)² = a² + b² + c² + 2ab + 2bc + 2ca
  • (a-b-c)² = a² + b² + c² - 2ab + 2bc - 2ca
  • (a-b+c)² = a² + b² + c² - 2ab - 2bc + 2ca

__________________________

Similar questions