Math, asked by thiruselvi20021985, 3 days ago

Expand using suitable identity (2 − 3) 2​

Answers

Answered by mohitverma302005
1

Answer:

1

Step-by-step explanation:

by using identity (a-b)²=a²+b²-2ab

(2)²+(3)²-2(2)(3)

4+9-12

13-12

=1

Answered by e251707
1

Answer:

ok varnika can I call you V

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Solution−

Given expression is

\begin{gathered}\sf \: \left( \dfrac{2x}{3} - \dfrac{3}{2x} \right)^{2} \\ \\ \end{gathered}

(

3

2x

2x

3

)

2

Expanding using Binomial theorem, we have

\begin{gathered}\sf \: = \: ^2C_{0} {\bigg[\dfrac{2x}{3} \bigg]}^{0} { \bigg[ - \dfrac{3}{2x} \bigg]}^{2} + \: ^2C_{1} {\bigg[\dfrac{2x}{3} \bigg]}^{1} { \bigg[ - \dfrac{3}{2x} \bigg]}^{2 - 1} + \: ^2C_{2} {\bigg[\dfrac{2x}{3} \bigg]}^{2} {\bigg[ - \dfrac{3}{2x} \bigg]}^{2 - 2} \\ \\ \end{gathered}

=

2

C

0

[

3

2x

]

0

[−

2x

3

]

2

+

2

C

1

[

3

2x

]

1

[−

2x

3

]

2−1

+

2

C

2

[

3

2x

]

2

[−

2x

3

]

2−2

\begin{gathered}\sf \: = \: 1 \times 1 \times \frac{9}{ {4x}^{2} } + \: 2 {\bigg[\dfrac{2x}{3} \bigg]}^{1} { \bigg[ - \dfrac{3}{2x} \bigg]}^{1} + \: 1 {\bigg[\dfrac{2x}{3} \bigg]}^{2} {\bigg[ - \dfrac{3}{2x} \bigg]}^{0} \\ \\ \end{gathered}

=1×1×

4x

2

9

+2[

3

2x

]

1

[−

2x

3

]

1

+1[

3

2x

]

2

[−

2x

3

]

0

\begin{gathered}\sf \: = \: \dfrac{9}{ {4x}^{2} } - 2 + \: \dfrac{ {4x}^{2} }{9} \\ \\ \end{gathered}

=

4x

2

9

−2+

9

4x

2

Hence,

\begin{gathered}\bf\implies \: \left( \frac{2x}{3} - \frac{3}{2x} \right)^{2} = \: \dfrac{9}{ {4x}^{2} } - 2 + \: \dfrac{ {4x}^{2} }{9} \\ \\ \end{gathered}

⟹(

3

2x

2x

3

)

2

=

4x

2

9

−2+

9

4x

2

\rule{190pt}{2pt}

Formulae Used :-

\begin{gathered}\boxed{ \sf{ \: {(x + y)}^{n} = \: ^nC_{0} {x}^{0} {y}^{n} + \: ^nC_{1} {x}^{1} {y}^{n - 1} + \: ^nC_{2} {x}^{2} {y}^{n - 2} + - - - + \: ^nC_{n} {x}^{n} {y}^{0} \: }} \\ \\ \end{gathered}

(x+y)

n

=

n

C

0

x

0

y

n

+

n

C

1

x

1

y

n−1

+

n

C

2

x

2

y

n−2

+−−−+

n

C

n

x

n

y

0

\begin{gathered}\boxed{ \sf{ \:^nC_{0} \: = \: ^nC_{n} \: = \: 1 \: }} \\ \\ \end{gathered}

n

C

0

=

n

C

n

=1

\begin{gathered}\boxed{ \sf{ \:^nC_{1} \: = \: ^nC_{n - 1} \: = \: \frac{n(n - 1)}{2} \: }} \\ \\ \end{gathered}

n

C

1

=

n

C

n−1

=

2

n(n−1)

\rule{190pt}{2pt}

{{ \mathfrak{Additional\:Information}}}AdditionalInformation

General term in the expansion of (x + y)^n(x+y)

n

is

\begin{gathered}\boxed{ \sf{ \: t_{r + 1} \: = \: ^nC_{r} \: {x}^{n - r} \: {y}^{r} \: }} \\ \\ \end{gathered}

t

r+1

=

n

C

r

x

n−r

y

r

General term in the expansion of (x + y)^n(x+y)

n

from the end is

\begin{gathered}\boxed{ \sf{ \: t_{r + 1} \: = \: ^nC_{r} \: {x}^{n} \: {y}^{n - r} \: }} \\ \\ \end{gathered}

t

r+1

=

n

C

r

x

n

y

n−r

Similar questions