Math, asked by santoshpriyadarshi, 10 months ago

Expand (X+1/X) power 2​

Answers

Answered by soham3994
6

Answer:

(x+1/x)^2

=x^2+1/x^2+2×x×1/x

=x^2+1/x^2+2

Step-by-step explanation:

Since,by using (a+b)^2 identity,we get x2+1/x2+2x1/x

.As x and 1/x get cut we get 2 only hence,

x^2+1/x^2+2

I HOPE IT HELPS......

Answered by Asterinn
13

We have to expand the following expression :-

 {(x +  \dfrac{1}{x} )}^{2}

Now we know that :-

{(a+b)^2 = a^2 + b^2 + 2ab}

therefore now :-

\implies{(x +  \dfrac{1}{x} )}^{2}  =  {x}^{2}  +   {(\dfrac{1}{x} )}^{2}  + 2.x.(\dfrac{1}{x})

\implies{(x +  \dfrac{1}{x} )}^{2}  =  {x}^{2}  +   {(\dfrac{1}{x} )}^{2}  + 2.1.\dfrac{1}{1}

\implies{(x +  \dfrac{1}{x} )}^{2}  =  {x}^{2}  +   {(\dfrac{1}{x} )}^{2}  + 2

\implies{(x +  \dfrac{1}{x} )}^{2}  =  {x}^{2}  +   {\dfrac{1}{{x}^{2}} } + 2

Answer :

{x}^{2}  +   {\dfrac{1}{{x}^{2}} } + 2

_______________________

\large\bf\green{Learn\:More}

\implies{(a+b)^2 = a^2 + b^2 + 2ab}

\implies{(a-b)^2 = a^2 + b^2 - 2ab}

\implies{(a+b)^3 = a^3 + b^3 + 3ab(a + b)}

\implies{(a-b)^3 = a^3 - b^3 - 3ab(a-b)}

\implies{(a^3+b^3)= (a+b)(a^2 - ab + b^2)}

\implies{(a^3-b^3)= (a-b)(a^2 + ab + b^2)}

______________________

Similar questions