Math, asked by jiyap6448, 8 months ago

expand (x/2+2y/3-3z/4)​

Answers

Answered by kamilahmadkhan
1

Answer:

         6x + 8y - 9z

 ————————————

                12    

Step-by-step explanation:

Step  1  :

           z

Simplify   —

           4

Equation at the end of step  1  :

  x    y      z

 (—+(2•—))-(3•—)

  2    3      4

Step  2  :

           y

Simplify   —

           3

Equation at the end of step  2  :

  x         y      3z

 (— +  (2 • —)) -  ——

  2         3      4  

Step  3  :

           x

Simplify   —

           2

Equation at the end of step  3  :

  x    2y     3z

 (— +  ——) -  ——

  2    3      4  

Step  4  :

Calculating the Least Common Multiple :

4.1    Find the Least Common Multiple

     The left denominator is :       2  

     The right denominator is :       3  

       Number of times each prime factor

       appears in the factorization of:

Prime  

Factor   Left  

Denominator   Right  

Denominator   L.C.M = Max  

{Left,Right}  

2 1 0 1

3 0 1 1

Product of all  

Prime Factors  2 3 6

     Least Common Multiple:

     6  

Calculating Multipliers :

4.2    Calculate multipliers for the two fractions

   Denote the Least Common Multiple by  L.C.M  

   Denote the Left Multiplier by  Left_M  

   Denote the Right Multiplier by  Right_M  

   Denote the Left Deniminator by  L_Deno  

   Denote the Right Multiplier by  R_Deno  

  Left_M = L.C.M / L_Deno = 3

  Right_M = L.C.M / R_Deno = 2

Making Equivalent Fractions :

4.3      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

  L. Mult. • L. Num.      x • 3

  ——————————————————  =   —————

        L.C.M               6  

  R. Mult. • R. Num.      2y • 2

  ——————————————————  =   ——————

        L.C.M               6    

Adding fractions that have a common denominator :

4.4       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

x • 3 + 2y • 2     3x + 4y

——————————————  =  ———————

      6               6    

Equation at the end of step  4  :

 (3x + 4y)    3z

 ————————— -  ——

     6        4  

Step  5  :

Calculating the Least Common Multiple :

5.1    Find the Least Common Multiple

     The left denominator is :       6  

     The right denominator is :       4  

       Number of times each prime factor

       appears in the factorization of:

Prime  

Factor   Left  

Denominator   Right  

Denominator   L.C.M = Max  

{Left,Right}  

2 1 2 2

3 1 0 1

Product of all  

Prime Factors  6 4 12

     Least Common Multiple:

     12  

Calculating Multipliers :

5.2    Calculate multipliers for the two fractions

   Denote the Least Common Multiple by  L.C.M  

   Denote the Left Multiplier by  Left_M  

   Denote the Right Multiplier by  Right_M  

   Denote the Left Deniminator by  L_Deno  

   Denote the Right Multiplier by  R_Deno  

  Left_M = L.C.M / L_Deno = 2

  Right_M = L.C.M / R_Deno = 3

Making Equivalent Fractions :

5.3      Rewrite the two fractions into equivalent fractions

  L. Mult. • L. Num.      (3x+4y) • 2

  ——————————————————  =   ———————————

        L.C.M                 12      

  R. Mult. • R. Num.      3z • 3

  ——————————————————  =   ——————

        L.C.M               12  

Adding fractions that have a common denominator :

5.4       Adding up the two equivalent fractions

(3x+4y) • 2 - (3z • 3)     6x + 8y - 9z

——————————————————————  =  ————————————

          12                    12      

Final result :

        6x + 8y - 9z

 ————————————

                 12    

Similar questions