Math, asked by chandan1234512, 1 month ago

Expand (x+2)^6 using binomial theorem

don't spam will report​

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \tt{ \blue{(x + 2)^{6} }}

 \sf{ =  \:^{6}C_{0}( {x}^{6} ) + \:^{6}C_{1}( {x}^{5} ) \cdot 2 + \:^{6}C_{2}( {x}^{4} ) \cdot (2) ^{2} +\:^{6}C_{3}( {x}^{3} ) \cdot (2)^{3}   +  \:^{6}C_{4}( {x}^{2} ) \cdot (2)^{4} +  \:^{6}C_{5}( x ) \cdot (2)^{5}  +   \:^{6}C_{6}(2)^{6} }

 \sf{ =   {x}^{6} + 6( {x}^{5} ) \cdot 2 + 15( {x}^{4} ) \cdot (2) ^{2} +20( {x}^{3} ) \cdot (2)^{3}   +  15( {x}^{2} ) \cdot (2)^{4} +  6( x ) \cdot (2)^{5}  +   (2)^{6} }

 \sf{ =   {x}^{6} + 12{x}^{5} + 60{x}^{4} +160 {x}^{3}   +  240 {x}^{2}  +  192 x   +   128 }

Similar questions