Expand (x+3) (x+5) (x+2).
Answers
Answered by
13
Answer:
Step-by-step explanation:
= [(x+3)(x+5)] (x+2)
applying identity (x+a) (x+b)= x^2 +(a+b)x +ab
= [ x^2+(3+5)x + 3*5] (x+2)
=[x^2 + 8x +15] (x+2)
=x[ x^2 +8x+15 ] +2[x^2+8x +15]
=x^3 + 8x^2 +15x +2x^2+ 16x +30
= x^3 + 10x^2 + 31x +30
Answered by
8
- (x + 3) (x + 5) (x + 2) = x³ + 10x² + 31x + 30
Step-by-step explanation:
Given,
- (x + 3) (x + 5) (x + 2)
Comparing,
- (x + a) (x + b) (x + c) = (x + 3) (x + 5) (x + 2)
we get,
- x = x
- a = 3
- b = 5
- c = 2
Solving,
⟼ (x + a) (x + b) (x + c) = x³ + (a + b + c) x² + (ab + bc + ca) x + abc
⟼ (x + 3) (x + 5) (x + 2) = (x)³ + (3 + 5 + 2) (x)² + (ab + bc + ca) x + abc
⟼ (x + 3) (x + 5) (x + 2) = x³ + 10x² + [(3 × 5) + (5 × 2) + (2 × 3)] x + (5 × 3 × 2)
⟼ (x + 3) (x + 5) (x + 2) = x³ + 10x² + [(15) + (10) + (6)] x + (5 × 3 × 2)
⟼ (x + 3) (x + 5) (x + 2) = x³ + 10x² + 31x + 30
- The expanded form = (x + 3) (x + 5) (x + 2) = x³ + 10x² + 31x + 30
Similar questions
Math,
2 months ago
Biology,
2 months ago
Computer Science,
2 months ago
Computer Science,
6 months ago
English,
10 months ago
English,
10 months ago