Math, asked by shankersingh262, 3 months ago

expanded form of log 15 is​

Answers

Answered by Anonymous
50

Expansion :

  • Expansion by Taylor's series

 \longrightarrow \:  \log(1 + x) = x -  \frac{ {x}^{2} }{2}  +  \frac{ {x}^{3} }{3}  -  \frac{ {x}^{4} }{4}  + ... \:  \:  \: for \:  \:  (1 + x)  > 0 \\

 \longrightarrow \:  \log(1 - x) =  - x -  \frac{ {x}^{2} }{2}  -  \frac{ {x}^{3} }{3}  - ...  \:  \:  \: for \:  \: (1 - x) > 0\\

let's expand this now

 \longrightarrow \:  \log(1 + 14) = 14 -  \frac{ {14}^{2} }{2}  +  \frac{ {14}^{3} }{3}  -  \frac{ {14}^{4} }{4}  + ... \\

 \bull \:  \:  \:  \:  \:  \underline{ \underline{ \mathfrak{What \:  \:  Taylor  \:  \: Series  \:  \: says}} \: }_{ \bigstar \star}

 \longrightarrow f(x) = \:  \: {     \sum ^{ \infty }}_{n = 0}  {f}^{(n)}(a) \frac{ {(x - a)}^{n} }{n!}  \\

Similar questions