expansion of 7 cos theta
Answers
Answer:
Step-by-step explanation:
x=cosθ+i sinθ \; \; \; \therefore
\dfrac{1}{x}=cosθ-i sinθ
\\ \; \\ \; \\
\therefore
x^m=(cosθ+i sinθ )^m \;=\; cosmθ+i sinmθ \; \; \; \; \ldots By \; De \; Moivre's \; Theorem
\\ \; \\ \; \\
Also,\dfrac{1}{x^m} =(cosθ-i sinθ )^m \;=\;cosmθ-i sinmθ\; \; \; \; \ldots
By \; De \; Moivre's \; Theorem
\\ \; \\ \; \\
\therefore
x+\dfrac{1}{x}=2 cosθ \; \; and \; \; x^m+
\dfrac{1}{x^m}
\;=\; 2 cosmθ
\\ \; \\ \; \\
\therefore
x+\dfrac{1}{x} \;=\; 2 cosθ
\; \;
and \; \; x^m+ \dfrac{1}{x^m} =2 cosmθ
\\ \; \\ \; \\
\therefore
\bigg( x+\dfrac{1}{x} \bigg)^7 \;=\; 2^7 cos^7 θ
\\ \; \\ \; \\
\therefore
x^7+7x^6 \dfrac{1}{x}+21x^5 \dfrac{1}{x^2} +35x^4 \dfrac{1}{x^3} +35x^3 \dfrac{1}{x^4} +21x^2 \dfrac{1}{x^5} +7x \dfrac{1}{x^6} +\dfrac{1}{x^7} =2^7 cos^7 θ
\\ \; \\ \; \\
\therefore
(x^7+\dfrac{1}{x^7 })+7(x^5+\dfrac{1}{x^5 } )+21(x^3+\dfrac{1}{x^3 } )+35(x+\dfrac{1}{x })=128cos^7 θ
\\ \; \\ \; \\
\therefore (2 cos7θ )+7(2 cos5θ )+21(2 cos3θ )+35(2 cosθ )=128cos^7 θ
\\ \; \\ \; \\ \; \\
\therefore
cos^7 θ=\dfrac{1}{64}[cos7θ+7 cos5θ+21 cos3θ+cosθ]