Math, asked by varshavineeth, 1 year ago

Expansion of a^3+b^3+c^3-3abc

Answers

Answered by Anonymous
1
a3+b3+c3-3abc=(a+b)3-3a2b-3ab2+c3-3abc

=(a+b+c)3-3(a+b)2c-3(a+b)c2-3ab(a+b+c)

=(a+b+c)3-3(a+b)c(a+b+c)-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ac)


varshavineeth: Thanx
Answered by pavanmeena16200366
0

Answer:


Step-by-step explanation:

Taking RHS of the identity:  

(a + b + c)(a2 + b2 + c2 - ab - bc - ca )  

Multiply each term of first polynomial with every term of second polynomial, as shown below:  

= a(a2 + b2 + c2 - ab - bc - ca ) + b(a2 + b2 + c2 - ab - bc - ca ) + c(a2 + b2 + c2 - ab - bc - ca )  

= { (a X a2) + (a X b2) + (a X c2) - (a X ab) - (a X bc) - (a X ca) } + {(b X a2) + (b X b2) + (b X c2) - (b X ab) - (b X bc) - (b X ca)} + {(c X a2) + (c X b2) + (c X c2) - (c X ab) - (c X bc) - (c X ca)}  

Solve multiplication in curly braces and we get:  

= a3 + ab2 + ac2 - a2b - abc - a2c + a2b + b3 + bc2 - ab2 - b2c - abc + a2c + b2c + c3 - abc - bc2 - ac2  

Rearrange the terms and we get:  

= a3 + b3 + c3 + a2b - a2b + ac2- ac2 + ab2 - ab2 + bc2 - bc2 + a2c - a2c + b2c - b2c - abc - abc - abc  

Above highlighted like terms will be subtracted and we get:  

= a3 + b3 + c3 - abc - abc - abc  

Join like terms i.e (-abc) and we get:  

= a3 + b3 + c3 - 3abc  

Hence, in this way we obtain the identity i.e. a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)


plz mark as brainliest


Similar questions