Math, asked by sakshi6513, 4 months ago

Expansion of sin(x/2)+cos(x/2) in ascending power of x

Answers

Answered by sanjivpatil9802
1

Answer:

1+(x/2)-(x^2/8)-(x^3/48)

Step-by-step explanation:

Answered by shritik1605sl
0

Answer:

sin(\frac{x}{2})+cos(\frac{x}{2})=1 + \frac{x}{2} - \frac{x^{2} }{2!(2^{2} )}  - \frac{x^{3} }{3!(2^{3} )}  + \frac{x^{4} }{4!(2^{4} )} + \frac{x^{5} }{5!(2^{5} )} - \frac{x^{6} }{6!(2^{6} )}.....  

Step-by-step explanation:

Using TAYLOR's theoram about x=0, we have

sin(\frac{x}{2})=\frac{x}{2} - \frac{x^{3} }{3!(2^{3} )} + \frac{x^{5} }{5!(2^{5} )} - \frac{x^{7} }{7!(2^{7}) }+....             eq.(1)

cos(\frac{x}{2})=1 - \frac{x^{2} }{2!(2^{2} )} + \frac{x^{4} }{4!(2^{4} )} - \frac{x^{6} }{6!(2^{6} )}+.....           eq.(2)

adding eq 1+2,we get.

sin(\frac{x}{2})+cos(\frac{x}{2})=1 + \frac{x}{2} - \frac{x^{2} }{2!(2^{2} )}  - \frac{x^{3} }{3!(2^{3} )}  + \frac{x^{4} }{4!(2^{4} )} + \frac{x^{5} }{5!(2^{5} )} - \frac{x^{6} }{6!(2^{6} )}.....  

   

Similar questions