Math, asked by nikhilghugare20702, 3 months ago

expansion of sin x cos x is ascending powers of X is​

Answers

Answered by MaheswariS
1

\textbf{Given:}

\mathsf{sinx\,cosx}

\textbf{To find:}

\textsf{Expansion of sinx cosx}

\textbf{Solution:}

\underline{\textsf{Concept used:}}

\boxed{\mathsf{sinx=\dfrac{x}{1!}-\dfrac{x^3}{3!}+\dfrac{x^5}{5!}-\;.\;.\;.\;.\;.\;.\;.\;.}}

\mathsf{Consider,}

\mathsf{sinx\,cosx}

\mathsf{=\dfrac{1}{2}(2\,sinx\,cosx)}

\mathsf{=\dfrac{1}{2}(sin\,2x)}

\mathsf{=\dfrac{1}{2}\left(\dfrac{(2x)}{1!}-\dfrac{(2x)^3}{3!}+\dfrac{(2x)^5}{5!}-\;.\;.\;.\;.\;.\;.\;.\;.\right)}

\mathsf{=\dfrac{1}{2}\left(\dfrac{2x}{1!}-\dfrac{8x^3}{3!}+\dfrac{32x^5}{5!}-\;.\;.\;.\;.\;.\;.\;.\;.\right)}

\mathsf{=\dfrac{x}{1!}-\dfrac{4x^3}{3!}+\dfrac{16x^5}{5!}-\;.\;.\;.\;.\;.\;.\;.\;.}

\implies\boxed{\mathsf{sinx\,cosx=x-\dfrac{4x^3}{3!}+\dfrac{16x^5}{5!}-\;.\;.\;.\;.\;.\;.\;.\;.}}

\textbf{Find more:}

Expansion of sinX is ascending power of X​

https://brainly.in/question/28857947

First two terms in expansion of e^x.secx by maclaurins theorem is

https://brainly.in/question/37802432

Answered by abhijeetbgs98
0

Answer:

expansion of sin x cos x is ascending powers of X is

Similar questions