expansion of (x + 1/x)² is
Answers
Answered by
2
Answer:
x*2 +2x1/x +1/x*2
x*2+2x+1/x*2
Answered by
5
To find -
Expand - ( x + 1/x )² .
Solution -
Here , assuming that x = a and (1/x) = b .
Now , we know that -
( a + b )² = a² + 2ab + b² .
=> ( x + 1/x )² = x² + 2 + 1/x² .
Similarly we can say that -
=> ( x - 1/x )² = x² + 1/x² - 2 .
_________________________
Additional Information -
( a + b )² = a² + 2ab + b²
( a - b )² = a² - 2ab + b²
( a + b )( a - b ) = a² - b²
( a + b )³ = a³ + 3ab ( a + b ) + b³
( a - b )³ = a³ - 3ab ( a + b ) - b³
( a + b + c )³ = a³ + b³ + c³ + 3 ( a + b )( b + c )( c + a )
a³ + b³ + c³ - 3abc = ( a + b + c )( a² + b² + c² - ab - bc - ca )
When a + b + c = 0 ,
a³ + b³ + c³ = 3abc .
_________________________________
Similar questions