Physics, asked by rsur3131, 2 months ago

experimenter measures a,b,c and then finds x= ab²/c³ if error in a,b,c are +-1%,+-7%,+-4% respectively find error in x​

Answers

Answered by manoranjanphy1
1

Explanation:

ufjfohhfogigogifigifofohudpfigt

Attachments:
Answered by Anonymous
11

Explanation :

Given :

\bf x=\dfrac{ab^2}{c^3} = \sf a^1b^2c^{-3}

Taking logarithm on both sides,

\sf\log x=\log a+2\log b-3\log c

Differentiating both sides,

\sf\dfrac{\Delta x}{x}=\dfrac{\Delta a}{a}+2\dfrac{\Delta b}{b}-3\dfrac{\Delta c}{c} \\

The percentage error in x is,

\\ \sf\dfrac{\Delta x}{x}\times100=\left(\dfrac{\Delta a}{a}\times100\right)+2\left(\dfrac{\Delta b}{b}\times100\right)+3\left(\dfrac{\Delta c}{c}\times100\right)

\\ \sf =1(\%\ error\ in\ a)+2(\%\ error\ in\ b)+3(\%\ error\ in\ c)

\\ \sf =\pm\left[1(1\%)+2(7\%)+3(4\%)\right]

\\ \sf =\pm\left[1\%+14\%+12\%\right]

\\ \sf =\pm\ 27\%

\\

\mapsto\boxed{\bf Error\%\ in\ x=\pm\ 27\%.}

The percentage error in x is ± 27%.

Similar questions