Science, asked by peethasssathvik7, 1 month ago

explain about theory. of abiogenesis​

Answers

Answered by ramesh124ramu2247
0

Answer:

Abiogenesis, the idea that life arose from nonlife more than 3.5 billion years ago on Earth. Abiogenesis proposes that the first life-forms generated were very simple and through a gradual process became increasingly complex. Biogenesis, in which life is derived from the reproduction of other life, was presumably preceded by abiogenesis, which became impossible once Earth’s atmosphere assumed its present composition.Although many equate abiogenesis with the archaic theory of spontaneous generation, the two ideas are quite different. According to the latter, complex life (e.g., a maggot or mouse) was thought to arise spontaneously and continually from nonliving matter. While the hypothetical process of spontaneous generation was disproved as early as the 17th century and decisively rejected in the 19th century, abiogenesis has been neither proved nor disproved.

The Oparin-Haldane Theory

In the 1920s British scientist J.B.S. Haldane and Russian biochemist Aleksandr Oparin independently set forth similar ideas concerning the conditions required for the origin of life on Earth. Both believed that organic molecules could be formed from abiogenic materials in the presence of an external energy source (e.g., ultraviolet radiation) and that the primitive atmosphere was reducing (having very low amounts of free oxygen) and contained ammonia and water vapour, among other gases. Both also suspected that the first life-forms appeared in the warm, primitive ocean and were heterotrophic (obtaining preformed nutrients from the compounds in existence on early Earth) rather than autotrophic (generating food and nutrients from sunlight or inorganic materials).5Oparin believed that life developed from coacervates, microscopic spontaneously formed spherical aggregates of lipid molecules that are held together by electrostatic forces and that may have been precursors of cells. Oparin’s work with coacervates confirmed that enzymes fundamental for the biochemical reactions of metabolism functioned more efficiently when contained within membrane-bound spheres than when free in aqueous solutions. Haldane, unfamiliar with Oparin’s coacervates, believed that simple organic molecules formed first and in the presence of ultraviolet light became increasingly complex, ultimately forming cells. Haldane and Oparin’s ideas formed the foundation for much of the research on abiogenesis that took place in later decades.

Similar questions