Math, asked by nikhil3557, 1 year ago

Explain addition and multiplication principle of counting​

Answers

Answered by Maira634
1

Answer:

The multiplication principle of counting states that if there are m choices in one category and n choices in another category, then there are m x n possible choices of combining one from each category.

They are the addition principle and the multiplication principle. The addition principle tells us that if we add or subtract a number from one side of the equation, we also need to add or subtract the same number from the other side to keep the equation the same.

Step-by-step explanation:

In algebra, we do a lot of manipulation to equations. But one thing always stays the same, and it is that whatever change we make, we make sure that our equation is the same. How do we do that if we are changing numbers and such? We use what is called the addition principle, which tells us if we add or subtract a number from one side of the equation, we also need to add or subtract the same number from the other side to keep the equation the same.

Think about this for a minute. We have two piles of chocolate bars that are equal to each other. What would happen if we added two more chocolate bars to just one side, say, the left side? Would the two piles still be equal to each other? No, they wouldn't. How would we keep the two sides equal? We would have to add two chocolate bars to the other side. This is what the addition principle is all about.

If we wanted to solve an equation like x + 6 = 9, we would use the addition principle to subtract 6 from the side with the variable so that our variable is by itself. Then we would subtract the same 6 from the 9 to get our answer. We subtract because our problem has our variable being added by a 6, and subtraction is the opposite operation of addition, which will help us to separate numbers from our variable. Our answer would then be x = 3.

But what if we have an equation like 3x + 6 = 9? How would we solve this one? We use the addition principle to subtract the 6 from both sides. But then we are left with a 3x = 3. Our variable is not by itself but is being multiplied by a 3. How do we manipulate the 3 so that it separates from the x? This is where we need to use another very useful principle called the multiplication principle.

The multiplication principle, similar to the addition principle, tells us that if we multiply or divide by a number on one side of an equation, we also need to multiply or divide by that same number on the other side to keep the equation the same. For this principle, you can think of two groups of rabbits. Right now, they are equal to each other. But what if the rabbits in one group all gave birth to three baby rabbits each? Would the two groups be equal to each other? No, they wouldn't. The other group would also have to give birth to the same number of baby rabbits for the two groups to be the same.

How do we use this multiplication principle? The same way we did with the addition principle. If we see our variable being multiplied or divided by a certain number, we perform the opposite operation to get our variable by itself.

So, to continue solving our problem from where we left off, 3x = 3, we will divide both sides of our equation by 3. If we do this, we will get x = 1 for our answer.

Answered by mugdha10
2

Refer to the attachment above for your answer!✔✔

Attachments:
Similar questions