Explain angle bisector theorem.
Answers
Answered by
3
A line that splits an angle into two equal angles is known as angle bisector......bisect means divide into two equal halves.....
Answered by
13
Here's the answer
Refer the attachment for the figure
Theorem :
The bisector of an angle of a triangle divides the side opposite to the angle in the ratio of the remaining sides.
Given:
In ∆ ABC , side AD bisects Angle BAC such that B - D - C.
Construction :
Draw seg DE perpendicular to side AB and seg DN perpendicular to side AC.
Proof :
Point D lies on the bisector of Angle BAC
By angle bisector Theorem, DE = DF ... (1)
Now,
Ratio of areas of the two triangles is equal to the ratio of the products of their bases and corresponding heights.
From 1,
Also,∆ADB and ∆ADC have common vertex A
and their bases BD and DC lie on the same line BC. So their heights are equal.
Area of triangles with equal heights are proportional to their corresponding bases.
From 2 and 3 ,
We get
Refer the attachment for the figure
Theorem :
The bisector of an angle of a triangle divides the side opposite to the angle in the ratio of the remaining sides.
Given:
In ∆ ABC , side AD bisects Angle BAC such that B - D - C.
Construction :
Draw seg DE perpendicular to side AB and seg DN perpendicular to side AC.
Proof :
Point D lies on the bisector of Angle BAC
By angle bisector Theorem, DE = DF ... (1)
Now,
Ratio of areas of the two triangles is equal to the ratio of the products of their bases and corresponding heights.
From 1,
Also,∆ADB and ∆ADC have common vertex A
and their bases BD and DC lie on the same line BC. So their heights are equal.
Area of triangles with equal heights are proportional to their corresponding bases.
From 2 and 3 ,
We get
Attachments:
Similar questions