explain big bang theory
Answers
Explanation:
Hey ❤
The Big Bang Theory is the leading explanation about how the universe began. At its simplest, it says the universe as we know it started with a small singularity, then inflated over the next 13.8 billion years to the cosmos that we know today.
Because current instruments don't allow astronomers to peer back at the universe's birth, much of what we understand about the Big Bang Theory comes from mathematical formulas and models. Astronomers can, however, see the "echo" of the expansion through a phenomenon known as the cosmic microwave background.
While the majority of the astronomical community accepts the theory, there are some theorists who have alternative explanations besides the Big Bang — such as eternal inflation or an oscillating universe.
The phrase "Big Bang Theory" has been popular among astrophysicists for decades, but it hit the mainstream in 2007 when a comedy show with the same name premiered on CBS. The show follows the home and academic life of several researchers (including an astrophysicist
The Big Bang theory is the prevailing cosmological model for the observable universe from the earliest known periods through its subsequent large-scale evolution.The model describes how the universe expanded from a very high-density and high-temperature state, and offers a comprehensive explanation for a broad range of phenomena, including the abundance of light elements, the cosmic microwave background (CMB), large scale structure and Hubble's law (the farther away galaxies are, the faster they are moving away from Earth).[9] If the observed conditions are extrapolated backwards in time using the known laws of physics, the prediction is that just before a period of very high density there was a singularity which is typically associated with the Big Bang. Physicists are undecided whether this means the universe began from a singularity, or that current knowledge is insufficient to describe the universe at that time. Detailed measurements of the expansion rate of the universe place the Big Bang at around 13.8 billion years ago, which is thus considered the age of the universe.After its initial expansion, the universe cooled sufficiently to allow the formation of subatomic particles, and later simple atoms. Giant clouds of these primordial elements (mostly hydrogen, with some helium and lithium) later coalesced through gravity, eventually forming early stars and galaxies, the descendants of which are visible today. Astronomers also observe the gravitational effects of dark matter surrounding galaxies. Though most of the mass in the universe seems to be in the form of dark matter, Big Bang theory and various observations seem to indicate that it is not made out of conventional baryonic matter (protons, neutrons, and electrons) but it is unclear exactly what it is made out of.
Since Georges Lemaître first noted in 1927 that an expanding universe could be traced back in time to an originating single point, scientists have built on his idea of cosmic expansion. The scientific community was once divided between supporters of two different theories, the Big Bang and the Steady State theory, but a wide range of empirical evidence has strongly favored the Big Bang which is now universally accepted. In 1929, from analysis of galactic redshifts, Edwin Hubble concluded that galaxies are drifting apart; this is important observational evidence consistent with the hypothesis of an expanding universe. In 1964, the cosmic microwave background radiation was discovered, which was crucial evidence in favor of the Big Bang model,since that theory predicted the existence of background radiation throughout the universe before it was discovered. More recently, measurements of the redshifts of supernovae indicate that the expansion of the universe is accelerating, an observation attributed to dark energy's existence.The known physical laws of nature can be used to calculate the characteristics of the universe in detail back in time to an initial state of extreme density and temperature.