Explain briefly how the unpolarized beams falling on unpolarized target causes interference between the wave describing the particles which scattered without change of spin direction?
Answers
Answer:
Unpolarized light
The atoms on the surface of a heated filament, which generate light, act independently of one another. Each of their emissions can be approximately modeled as a short “wave train” lasting from about 10−9 to 10−8 second. The electromagnetic wave emanating from the filament is a superposition of these wave trains, each having its own polarization direction. The sum of the randomly oriented wave trains results in a wave whose direction of polarization changes rapidly and randomly. Such a wave is said to be unpolarized. All common sources of light, including the Sun, incandescent and fluorescent lights, and flames, produce unpolarized light. However, natural light is often partially polarized because of multiple scatterings and reflections.