Science, asked by suraj65019, 2 months ago

Explain Conservation of linear momentum ? proof also ?

________________

1) Quality answer needed :-

2) Don't spam, otherwise your answer will be reported.

____________

Thanks☃️☃️​

Answers

Answered by Anonymous
3

Answer:

Conservation of linear momentum, general law of physics according to which the quantity called momentum that characterizes motion never changes in an isolated collection of objects; that is, the total momentum of a system remains constant.

Answered by Anonymous
32

{\underline{\boxed{\frak{\pmb{\quad★ \:Conservation \:  of \:  Linear  \: Momentum :-\quad}}}}}

→ It state that in an isolated system. The net Momentum of the whole system always remain constant is called change of linear momentum.

→ Let us consider two balls having Mass {\sf{ M_{(1)} }} and {\sf{ M_{(2)} }} Moving with some initial velocity {\sf{ U_{(1)} }} and {\sf{ U_{(2)} }} Respectively.

→ Now, After collision they acquires velocities {\sf{ V_{(1)} }} and {\sf{ V_{(2)} }}

→ Let us assume that, the system is isolated i.e, there is no external force acting on it.

{\underline{\boxed{ \purple{\frak{\pmb{\quad★  Before \:  \:  Collision:-\quad}}}}} }

 \implies{ \sf{We  \: know, p = mv}}

\implies{\sf{ p _{(i1)  \: } = m_{(1)  \: }u _{(1)  \: }}}

\implies{\sf{ p _{(i2)  \: } = m_{(2)  \: }u _{(2)  \: }}}

\implies{\sf{ p _{(Ti)  \: } = m_{(1)  \: }u _{(1)  \:  } +m_{(2)  \: }u _{(2)  \:  }  }}

{\underline{\boxed{ \red{\frak{\pmb{\quad★ \: After   \:  \:  Collision:-\quad}}}}} }

\implies{\sf{ p _{(1f)  \: } = m_{(1)  \: }v _{(1)  \: }}}

\implies{\sf{ p _{(2f)  \: } = m_{(2)  \: }v _{(2)  \: }}}

\implies{\sf{ p _{(Tf)  \: } = m_{(1)  \: }v_{(1)  \: } +m_{(2)  \: }v_{(2)  \: }  }}

\implies{\sf{ p _{(Ti)  \: } =  \: p_{(Tf)  }}}

{\sf{ \implies{   m_{(1)  \: }u _{(1)  \:  } +m_{(2)  \: }u _{(2)  \:  } =m_{(1)  \: }v _{(1)  \:  } +m_{(2)  \: }v _{(2) }}}}

{\underline{\boxed{ \green{\frak{\pmb{\quad★ \:   Proof :- During \:  \:  Collision:\quad}}}}} }

\implies{\sf{F _{(21) }}} it's mean, Force acting on 2 due to 1.

\implies{\sf{F _{(12) }}} it's mean, Force acting on 1 due to 2.

 \implies{ \sf{We  \: know, f = ma \:  [ Ⅱ law  ]}}

 \implies{\sf{F _{(21) } ={m _{(1) }{a_{(1) }  }}}}

 \implies{\sf{F _{(12) } ={m _{(2) }{a_{(2) }  }}}}

{ \sf{Using  \: Ⅱ \:  law : -  }}

 \implies{\sf{F _{(21) } =  { - F _{(12) } }}}

 \implies{\sf{ m _{(1) }{a_{(1) } ={ - m _{(2) }{a_{(2) }  }}}}}

Let, Time of Collisation is 't'

\sf {\implies{ m _{(1) } =  \frac{({ v _{(1) } -{ u _{(1) })}}}{t} }= { -  m _{(2) } =  \frac{({ v _{(2) } -{ u _{(2) })}}}{t} }}

 \sf{ \implies\frac{1}{t}[ m_{(1)} \: (v_{(1)}u_{(1)}})] = \frac{ - 1}{t}[ m_{(2)} \: (v_{(2)}u_{(2)}) ]

{ \sf{ \implies{m_{(1)}(v_{(1)} - u_{(1)} )=     \cancel\frac {t}{t}  \:[m_{(2)}(v_{(2)} -u_{(2)})]}}}

{ \sf{ \implies{m_{(1)}(v_{(1)} - u_{(1)} )=  - m_{(2)}(v_{(2)} -  u_{(2)})}}}

 \sf{ \implies{m_{(1)}v_{(1)} = {m_{(1)}u_{(1)} = -  m_{(2)}v_{(2)}  + {m_{(2)}u_{(2)} }}}}

 \sf{ \implies{m_{(1)}v_{(1)}  +  {m_{(2)}v_{(2)} =  m_{(1)}u_{(1)}  - {m_{(2)}u_{(2)} }}}}

\implies{ \pink{ \boxed{ \sf{p_{(Tf)} = {p_{(Tf)}}}}}} \: { \sf{Hence, \:  Proved.}}

____________________________

Similar questions