Math, asked by mateen786786, 11 months ago

explain cos theeta in terms of tan theeta​

Answers

Answered by meghutsav
0

Answer:

 \cos(x)  =  \frac{1}{ \sqrt{{ \tan}^{2}x \:  + 1 } }

Answered by tahseen619
3

 \cos \theta \:  =  \dfrac{1}{ \sqrt{1 +  \tan {}^{2}  \theta }}

Step-by-step explanation:

To Do:

Explain cos ø in term of tan ø .

Solution:

As we know ,

 \sec {}^{2} \theta  -  \tan {}^{2}  \theta = 1 \\  \\  \implies \:  { \sec}^{2}  \theta \:  = 1 +  \tan {}^{2}  \theta  \\  \\  \implies \frac{1}{ \cos{}^{2} \theta }  = 1 +  \tan {}^{2}  \theta  \\  \\   \implies \cos{}^{2}  \theta  = \frac{1}{1 +  \tan {}^{2}  \theta } \\  \\  \implies\cos \theta \:  =  \frac{1}{ \sqrt{1 +  \tan {}^{2}  \theta }}

Some important trigonometry Rules:

sinø . cosecø = 1

cosø . secø = 1

tanø . cotø = 1

sin²ø + cos²ø = 1

cosec²ø - cot² = 1

sec²ø - tan²ø = 1

Similar questions