Explain Demorgans first and Second law with logic ,symbol,truth table, and cases.
Answers
Answer:
Explanation:
As we have seen previously, Boolean Algebra uses a set of laws and rules to define the operation of a digital logic circuit with “0’s” and “1’s” being used to represent a digital input or output condition. Boolean Algebra uses these zeros and ones to create truth tables and mathematical expressions to define the digital operation of a logic AND, OR and NOT (or inversion) operations as well as ways of expressing other logical operations such as the XOR (Exclusive-OR) function.
While George Boole’s set of laws and rules allows us to analyise and simplify a digital circuit, there are two laws within his set that are attributed to Augustus DeMorgan (a nineteenth century English mathematician) which views the logical NAND and NOR operations as separate NOT AND and NOT OR functions respectively.
But before we look at DeMorgan’s Theory in more detail, let’s remind ourselves of the basic logical operations where A and B are logic (or Boolean) input binary variables, and whose values can only be either “0” or “1” producing four possible input combinations, 00, 01, 10, and 11.