Physics, asked by atiya670894, 1 year ago

explain doppler effect

Answers

Answered by keerthika6
1

Suppose that there is a happy bug in the center of a circular water puddle. The bug is periodically shaking its legs in order to produce disturbances that travel through the water. If these disturbances originate at a point, then they would travel outward from that point in all directions. Since each disturbance is traveling in the same medium, they would all travel in every direction at the same speed. The pattern produced by the bug's shaking would be a series of concentric circles as shown in the diagram at the right. These circles would reach the edges of the water puddle at the same frequency. An observer at point A (the left edge of the puddle) would observe the disturbances to strike the puddle's edge at the same frequency that would be observed by an observer at point B (at the right edge of the puddle). In fact, the frequency at which disturbances reach the edge of the puddle would be the same as the frequency at which the bug produces the disturbances. If the bug produces disturbances at a frequency of 2 per second, then each observer would observe them approaching at a frequency of 2 per second.

Now suppose that our bug is moving to the right across the puddle of water and producing disturbances at the same frequency of 2 disturbances per second. Since the bug is moving towards the right, each consecutive disturbance originates from a position that is closer to observer B and farther from observer A. Subsequently, each consecutive disturbance has a shorter distance to travel before reaching observer B and thus takes less time to reach observer B. Thus, observer B observes that the frequency of arrival of the disturbances is higher than the frequency at which disturbances are produced. On the other hand, each consecutive disturbance has a further distance to travel before reaching observer A. For this reason, observer A observes a frequency of arrival that is less than the frequency at which the disturbances are produced. The net effect of the motion of the bug (the source of waves) is that the observer towards whom the bug is moving observes a frequency that is higher than 2 disturbances/second; and the observer away from whom the bug is moving observes a frequency that is less than 2 disturbances/second. This effect is known as the Doppler effect.


atiya670894: too lengthy
Answered by Anonymous
15
Héllø Buddy!!♥

#NícÉ_Question___★

#aNsWeR ↓↓↓

===♥===♥===♥===♥===♥===♥=

The Doppler effect is the change in frequency or wavelength of a wave in relation to an observer who is moving relative to the wave source. It is named after the Austrian physicist Christian Doppler, who described the phenomenon in 1842.

A common example of Doppler shift is the change of pitch heard when a vehiclesounding a horn approaches and recedes from an observer. Compared to the emitted frequency, the received frequency is higher during the approach, identical at the instant of passing by, and lower during the recession.

===♥===♥===♥===♥===♥===♥=

#ThanKYou__★♦★

Anonymous: tue mme top pai la diya tha
Anonymous: ab jo dlt huye h na unke ans de de
Anonymous: 982 kr diye the mne
Anonymous: ok ji
Anonymous: heheh kue
Similar questions