Biology, asked by anjalikrishna2002, 8 months ago

explain double circulation in mammals and birds increase working efficiency of cells​

Answers

Answered by sanjayswain100427
1

Answer:

In mammals and birds, the heart is also divided into four chambers: two atria and two ventricles (figure d). The oxygenated blood is separated from the deoxygenated blood, which improves the efficiency of double circulation and is probably required for the warm-blooded lifestyle of mammals and birds.

Answered by 4sushmasingh
0

Answer:

In mammals, as in birds, the right and left ventricles of the heart are completely separated, so that pulmonary (lung) and systemic (body) circulations are completely independent. Oxygenated blood arrives in the left atrium from the lungs and passes to the left ventricle, whence it is forced through the aorta to the systemic circulation. Deoxygenated blood from the tissues returns to the right atrium via a large vein, the vena cava, and is pumped to the pulmonary capillary bed through the pulmonary artery.

mammalian heart

mammalian heart

Cross section of a four-chambered mammalian heart.

Encyclopædia Britannica, Inc.

Among vertebrates contraction of the heart is myogenic, or generated by muscle; rhythm is inherent in all cardiac muscle, but in myogenic hearts the pacemaker is derived from cardiac tissue. The pacemaker in mammals (and also in birds) is an oblong mass of specialized cells called the sinoatrial node, located in the right atrium near the junction with the venae cavae. A wave of excitation spreads from this node to the atrioventricular node, which is located in the right atrium near the base of the interatrial septum. From this point excitation is conducted along the atrioventricular bundle (bundle of His) and enters the main mass of cardiac tissue along fine branches, the Purkinje fibres. Homeostatic, or stable, control of the heart by neuroendocrine or other agents is mediated through the intrinsic control network of the heart.

Blood leaves the left ventricle through the aorta. The mammalian aorta is an unpaired structure derived from the left fourth aortic arch of the primitive vertebrate. Birds, on the other hand, retain the right fourth arch.

The circulatory system forms a complex communication and distribution network to all physiologically active tissues of the body. A constant, copious supply of oxygen is required for sustaining the active, heat-producing (endothermous) physiology of the higher vertebrates (see also endotherm). The efficiency of the four-chambered heart is important to this function. Oxygen is transported by specialized red blood cells, or erythrocytes, as in all vertebrates. Packaging the oxygen-bearing pigment hemoglobin in erythrocytes keeps the viscosity of the blood minimal and thereby allows efficient circulation while limiting the mechanical load on the heart. The mammalian erythrocyte is a highly evolved structure; its discoid, biconcave shape allows maximal surface area per unit volume. When mature and functional, mammalian red blood cells are enucleate (lacking a nucleus).

Respiratory system

Closely coupled with the circulatory system is the ventilatory (breathing) apparatus, the lungs and associated structures. Ventilation in mammals is unique. The lungs themselves are less efficient than those of birds, for air movement consists of an ebb and flow, rather than a one-way circuit, so a residual volume of air always remains that cannot be expired. Ventilation in mammals is by means of a negative pressure pump made possible by the evolution of a definitive thoracic cavity with a diaphragm.

heart

heart

The human heart in situ.

Encyclopædia Britannica, Inc.

The diaphragm is a unique composite structure consisting of (1) the transverse septum (a wall that primitively separates the heart from the general viscera); (2) pleuroperitoneal folds from the body wall; (3) mesenteric folds; and (4) axial muscles inserting on a central tendon, or diaphragmatic aponeurosis.

The lungs lie in separate airtight compartments called pleural cavities, separated by the mediastinum. As the size of the pleural cavity is increased, the lung is expanded and air flows in passively. Enlargement of the pleural cavity is produced by contraction of the diaphragm or by elevation of the ribs. The relaxed diaphragm domes upward, but when contracted it stretches flat. Expiration is an active movement brought about by contraction of abdominal muscles against the viscera.

Air typically enters the respiratory passages through the nostrils, where it may be warmed and moistened. It passes above the bony palate.

Similar questions