explain for 4 marks
Attachments:
Answers
Answered by
0
Answer:
Step-by-step explanation:
LHS:
(sin∅-cos∅+1)/(sin∅+cos∅-1)=[(sin∅-cos∅+1)/cos∅]/[(sin∅+cos∅-1)/cos∅]
(Dividing numerator and denominator by cos∅)
=(tan∅-1+sec∅)/(tan∅-sec∅+1)
=[tan∅+sec∅-(sec²∅-tan²∅)]/(tan∅-sec∅+1) [sec²∅-tan²∅=1]
=(tan∅+sec∅)(1-[sec∅-tan∅])/(tan∅-sec∅+1)
=(tan∅+sec∅)
=1/(sec∅-tan∅) ( sec²∅-tan²∅=1
⇒(sec∅-tan∅)(sec∅+tan∅)=1
sec∅+tan∅=1/(sec∅-tan∅) )
LHS=RHS
HENCE PROVED
Similar questions