Math, asked by deepranga90, 1 year ago

explain for 4 marks

Attachments:

Answers

Answered by ibrahimshihab
0

Answer:


Step-by-step explanation:

LHS:        

  (sin∅-cos∅+1)/(sin∅+cos∅-1)=[(sin∅-cos∅+1)/cos∅]/[(sin∅+cos∅-1)/cos∅]

                                           (Dividing numerator and denominator by cos∅)

        =(tan∅-1+sec∅)/(tan∅-sec∅+1)

        =[tan∅+sec∅-(sec²∅-tan²∅)]/(tan∅-sec∅+1)      [sec²∅-tan²∅=1]

        =(tan∅+sec∅)(1-[sec∅-tan∅])/(tan∅-sec∅+1)

        =(tan∅+sec∅)

        =1/(sec∅-tan∅)               (  sec²∅-tan²∅=1    

                                                  ⇒(sec∅-tan∅)(sec∅+tan∅)=1

                                                   sec∅+tan∅=1/(sec∅-tan∅)        )

                      LHS=RHS

            HENCE PROVED        

Similar questions