Science, asked by ankitsingh9005843590, 10 months ago

explain how a freely swinging pendulum obey the law of conservation of energy spammers keep away please answer it fast the one who answers first fast will be marked as brainliest​

Answers

Answered by MITHIRAN017
1

Answer:

Oscillatory motion is everywhere. The swing of the pendulum seems to be an irresistible metaphor in fashion, economics and elsewhere, and it is also an example of a cool piece of physics. Oscillatory motion is an important thing to understand if, for example, you want to build bridges that stay up. And even though it can get rather complicated, most of it can be approximated by what physicists and engineers call "Simple Harmonic Motion".

Most things, before they start oscillating, are in equilibrium. That is, they are minding their own business, experiencing no net force, generally not doing much. You can think of a ball, at rest on a piece of land that, at least at that place, is flat.

Now imagine you move the ball slightly to one side. One of three things can happen. One is... well, nothing. If the land is flat, the ball will just stay where you put it. Another is, if the flat bit of land happened to be at the top of a hill, or a ledge halfway up a hill, the ball will now roll away down the hill.

But the third possibility is that the ball was at the bottom of a dip, a valley. In this case it will roll right back again to its initial position. However, when it gets to its initial position (the bottom of the valley) it will have picked up some speed and this will carry it past and up the other side. And then back again. And so on, oscillating, until the energy that you gave it by lifting part way up the side of the hill is dissipated by something - usually friction.

This third case is actually the most common one in all kinds of physical systems, simply because if you roll a random bunch of balls over a random landscape, more of them will generally end up in valleys than anywhere else. Atoms in a crystal are in little valleys of electromagnetic potential energy. A child's swing, the hammock I am lying in as I write, are in gravitational potential wells (like the balls in the example). A bridge is in an equilibrium under many forces, stress and strains, including gravity, such that if the wind, or a push from many feet, displaces it slightly, those forces will return it to its initial position - but, unless the energy is dissipated somehow, it will overshoot and continue wobbling.

The key thing in such an oscillation is that, unless you include damping to take the energy off somewhere else, the energy of the system (ball, atom, hammock...) is constant, but is continually switching between potential energy (due to forces that want to push the object back to its equilibrium position) and kinetic energy (due to its speed). Here's a nice gif illustrating this for a weight on a spring.

Similar questions