Math, asked by Anonymous, 1 year ago

Explain how much portion of an atom located at
(i)corner and (ii)body centre of a cubic unit cell is part of its neighbouring unit cell.
( my fav. chapter...solid State.hehe.. pata h n)

Answers

Answered by anjanajadav
8
QUESTION : Explain how much portion of an atom located at (i) corner and (ii) body−centre of a cubic unit cell is part of its neighboring unit cell.

Solution:
(i)the atom of corner of a cubic unit cell is shared by eight adjacent unit cells.
Therefore, portion of the atom at the corner = 8 × 1/8  = 1 atom.

(ii) The atoms present at the center of the body is not shared by its neighboring unit cell.
Therefore, portion of the atom at the center = 1 atom

hope this helps you .... this is mine favorite atom

anjanajadav: thx
Answered by ritik12336
8

\huge\red{heya!!....swigy}

1) THERE ARE 8 CORNER OF A UNIT CELL BECAUSE IT IS AS CUBE IN SHAPE .

SO AT EVERY CORNER IT IS 1/ 82) PART IS PRESENT AND SHARED BY 8 OTHER

2) IN BODY CENTRE THERE IS NO SHARING SO COMPLETE PART OF ATOM IS PRESENT .

THANKS


sumit7021: yy
Nashib: what a beautiful lady you r
Nashib: But l can't see ur face
ritik12336: Tq
Similar questions