explain how the formula of a compound is derived by using electric charges on radicals. give examples
Answers
Answer:
In chemistry, a radical is an atom, molecule, or ion that has an unpaired valence electron.[1][2] With some exceptions, these unpaired electrons make radicals highly chemically reactive. Many radicals spontaneously dimerize. Most organic radicals have short lifetimes.
The hydroxyl radical, Lewis structure shown, contains one unpaired electron
A notable example of a radical is the hydroxyl radical (HO•), a molecule that has one unpaired electron on the oxygen atom. Two other examples are triplet oxygen and triplet carbene (:CH
2) which have two unpaired electrons.
Radicals may be generated in a number of ways, but typical methods involve redox reactions. Ionizing radiation, heat, electrical discharges, and electrolysis are known to produce radicals. Radicals are intermediates in many chemical reactions, more so than is apparent from the balanced equations.
Radicals are important in combustion, atmospheric chemistry, polymerization, plasma chemistry, biochemistry, and many other chemical processes. A majority of natural products are generated by radical-generating enzymes. In living organisms, the radicals superoxide and nitric oxide and their reaction products regulate many processes, such as control of vascular tone and thus blood pressure. They also play a key role in the intermediary metabolism of various biological compounds. Such radicals can even be messengers in a process dubbed redox signaling. A radical may be trapped within a solvent cage or be otherwise bound.
Stability and formation Edit
Stability of organic radicals Edit
The radical derived from α-tocopherol
Although organic radicals are generally transient, some are quite long-lived. Generally organic radicals are stabilized by any or all of these factors: presence of electron-donating groups, delocalization, and steric protection.[3] The compound 2,2,6,6-tetramethylpiperidinyloxyl illustrates the combination of all three factors. It is a commercially available solid that, aside from being magnetic, behaves like a normal organic compound.
Facile H-atom donors Edit
The stability of many (or most) organic radicals is not indicated by their isolability but is manifested in their ability to function as donors of H.. This property reflects a weakened bond to hydrogen, usually O-H but sometimes N-H or C-H. This behavior is important because these H. donors serve as antioxidants in biology and in commerce. Illustrative is α-tocopherol (vitamin E). The tocopherol radical itself is insufficiently stable for isolation, but the parent molecule is a highly effective H-atom donor. The C-H bond is weakened in triphenylmethyl (trityl) derivatives.
2,2,6,6-Tetramethylpiperidinyloxyl is an example of a robust organic radical.
Stability of inorganic radicals Edit
The inorganic compound nitric oxide (NO) is a stable radical. Fremy's salt (Potassium nitrosodisulfonate, (KSO3)2NO) is a related example. There are also hundreds of examples of thiazyl radicals, despite limited extent of π resonance stabilization.[4][5]
Radicals form by breaking of covalent bonds by homolysis. The homolytic bond dissociation energies, usually abbreviated as "ΔH °" are a measure of bond strength. Splitting H2 into 2H•, for example, requires a ΔH ° of +435 kJ·mol-1, while splitting Cl2 into two Cl• requires a ΔH ° of +243 kJ·mol-1. For weak bonds, homolysis can be induced thermally. Strong bonds require high energy photons or even flames to induce homolysis.
Diradicals Edit
Diradicals are molecules containing two radical centers. Dioxygen (O2) is the premier example of a stable diradical. Singlet oxygen, the lowest-energy non-radical state of dioxygen, is less stable than the diradical due to Hund's rule of maximum multiplicity. The relative stability of the oxygen diradical is primarily due to the spin-forbidden nature of the triplet-singlet transition required for it to grab electrons, i.e., "oxidize". The diradical state of oxygen also results in its paramagnetic character, which is demonstrated by its attraction to an external magnet.[6] Diradicals can also occur in
Answer:
ok please follow me mark me on brainliest ok