Math, asked by Anonymous, 5 months ago

explain integrals of some particular functions​

Answers

Answered by danger75
13

Answer:

please mark me as a brainlist answer

Attachments:
Answered by suraj5070
247

 \huge {\boxed {\mathbb {QUESTION}}}

explain integration by partial functions

 \huge {\boxed {\mathbb {ANSWER}}}

 A\: rational \:function\: is\: a\: ratio\: of\: two\\ polynomials\:\frac{ P(x)} {Q(x)} , where \:Q(x)\\ \cancel {=} 0.

 Now, \:if \:the\: degree\: of\: P(x) \:is\: lesser\: than\: the\\ degree\: of\: Q(x), \:then\: it \:is\: a \:proper\: fraction,\\ else\: it \:is\: an \:improper\: fraction.

 \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU }}}

________________________________________________________

 \huge {\boxed {\mathbb {EXTRA\:INFORMATION }}}

 The\: integrand\: is\: a \:proper\: rational\: function\\ by \:using\: the\: form\: of \:partial\: fraction

 \frac{1} {[(x + 1) (x + 2)]} =\frac{ A} {(x + 1)} + \frac{B} {(x + 2)} ---- (1)

 Solving\: this\: equation

 A (x + 2) + B (x + 1) = 1

 Ax + 2A + Bx + B = 1

 x (A + B) + (2A + B) = 1

 LHS = RHS,

 A + B = 0\: and\: 2A + B = 1

solving \:these\: two\: equations

 A = 1\: and\: B = – 1.

 \therefore

\implies \frac{1} {[(x + 1) (x + 2)]} = \frac{1} {(x + 1)} –\frac{ 1} {(x + 2)}

\implies \int \frac{dx} {[(x + 1) (x + 2)]} = \int {dx} {(x + 1)} – \int{ dx} {(x + 2)}

 \implies log |x + 1| – log |x + 2| + C

 {\mathbb{\colorbox {orange} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {lime} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {aqua} {@suraj5070}}}}}}}}}}}}}}}

Similar questions