Math, asked by Anonymous, 4 months ago

explain integration by substitution method....​

Answers

Answered by Anonymous
1

Answer:

In this method of integration by substitution, any given integral is transformed into a simple form of integral by substituting the independent variable by others. Take for example an equation having an independent variable in x, i.e. ∫sin (x3).

Answered by suraj5070
230

 \huge {\boxed {\mathbb {QUESTION}}}

explain integration by substitution method.

 \huge {\boxed {\mathbb {ANSWER}}}

  •  Given \:integral\: is\: transformed\: into a\\ simple \:form \:of\: integral \:by\: substituting\: the\\ independent\: variable\: by\: others

 \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

__________________________________________

 \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 \implies \int\frac{{e} ^{tan-1_x}} {1+{x} ^{2}}

 \implies Let\:t={tan} ^{-1}x ----(1)

 \implies dt=(\frac{1}{1+{x}^{2}})dx

 \implies l=\int ({e} ^{t}) dt

 \implies {e}^{t} +C -----(2)

 Substitute \:the\:value\:of\:(1) \:in\:(2)

 \implies{\boxed {\boxed {l={e} ^{tan-1_x}+C}}}

 {\mathbb{\colorbox {orange} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {lime} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {aqua} {@suraj5070}}}}}}}}}}}}}}}

Similar questions