Math, asked by reetangalimahapatra, 11 months ago

explain it also
I will mark as brainlist plz answer the questions plz!​

Attachments:

Answers

Answered by Anonymous
40

\Large{\underline{\underline{\bf{Solution :}}}}

☯ Question : 1(i)

\sf{\rightarrow x - 1 = 0} \\ \\ \sf{\rightarrow x = 1} \\ \\ \bf{Put \: value \: of \: x \: in \: polynomial.} \\ \\ \sf{\rightarrow 2(1)^4 + 3(1)^3 - 5(1)^2 + 4(1) - 1} \\ \\ \sf{\rightarrow 2 + 3 - 5 + 4 - 1} \\ \\ \sf{\rightarrow 9 - 6} \\ \\ \sf{\rightarrow 3}

\Large{\implies{\boxed{\boxed{\sf{Remainder : 3}}}}}

→ Also refer to 1st Attachment.

\rule{150}{2}

★ (ii)

\sf{\rightarrow x - 2 = 0} \\ \\ \sf{\rightarrow x = 2} \\ \\ \bf{Put \: value \: of \: x \: in \: polynomial.} \\ \\ \sf{\rightarrow (2)^4 - 2(2)^3 - 3(2)^2 + 4(2) + 1} \\ \\ \sf{\rightarrow 16 - 16 - 12 + 8 + 1} \\ \\ \sf{\rightarrow 25 - 28} \\ \\ \sf{\rightarrow -3}

\Large{\implies{\boxed{\boxed{\sf{Remainder : -3}}}}}

→ Also refer to second attachment.

\rule{150}{2}

★ (iii)

\sf{\rightarrow x - 4 = 0} \\ \\ \sf{\rightarrow x = 4} \\ \\ \bf{Put \: value \: of \: x \: in \: polynomial.} \\ \\ \sf{\rightarrow  + 3(4)^3 - 57 + 4(4) - 1} \\ \\ \sf{\rightarrow 192 - 57 + 16 - 1} \\ \\ \sf{\rightarrow 208 - 58} \\ \\ \sf{\rightarrow 150}

\Large{\implies{\boxed{\boxed{\sf{Remainder : 150}}}}}

→ Also refer to third attachment.

\rule{150}{2}

★ (iv)

\sf{\rightarrow x - 3 = 0} \\ \\ \sf{\rightarrow x = 3} \\ \\ \bf{Put \: value \: of \: x \: in \: polynomial.} \\ \\ \sf{\rightarrow 2(3)^5 - (3)^4 - 4(3)^3 - 5(3)^2 + 4(3) - 1} \\ \\ \sf{\rightarrow 486 - 81 - 108 - 45+ 12 - 1} \\ \\ \sf{\rightarrow 498 - 235} \\ \\ \sf{\rightarrow 263}

\Large{\implies{\boxed{\boxed{\sf{Remainder : 263}}}}}

→ Also refer to fourth attachment.

\rule{400}{4}

☯ Question : 2 (i)

→ (2x + 1)(3x - 1)

Firstly, we will multiply 2x by 3x and (-1) then we will multiply (1) by 3x and (-1).

→ 6x² - 2x + 3x - 1

→ 6x² - x - 1

\Large{\implies{\boxed{\boxed{\sf{6x^2 - x - 1}}}}}

\rule{150}{2}

★ (ii)

→ (x + 2)(4x - 3)

Firstly, we will multiply x by 4x and (-3) then we multiply 2 by 4x and (-3).

→ 4x² - 3x + 8x - 6

→ 4x² - 5x - 6

\Large{\implies{\boxed{\boxed{\sf{4x^2 - 5x - 6}}}}}

\rule{150}{2}

★ (iii)

→ (5x - 2)(3x + 1)

Firstly, we will multiply 5x by 3x and 1 then we will multiply (-2) by 3x and 1.

→ 15x² + 5x - 6x - 2

→15x² - x + 2

\Large{\implies{\boxed{\boxed{\sf{15x^2 - x + 2}}}}}

\rule{150}{2}

★ (iv)

→ (2x - 4)(5x - 1)

Firstly, we will multiply 2x by 5x and (-1) then we will multiply (-4) by 5x and (-1).

→ 10x² - 2x - 20x - 4

→ 10x² - 22x - 4

\Large{\implies{\boxed{\boxed{\sf{10x^2 - 22x - 4}}}}}

Attachments:

Nereida: Awesome !
nirman95: Keep it up ❤️
Similar questions