Math, asked by Mahesh50124, 2 months ago

explain its clearly and don't scam​

Attachments:

Answers

Answered by Anonymous
34

\sf\blue{To  \: Find:-}

\sf{ a = ? }

\sf{ b = ? }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\sf\blue{Method  \: Used:-}

\sf{Rationalising  \: Denominator}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\sf\blue{Formula \:  Used:-}

 \sf{(a - b)(a + b) =  {a}^{2}  -  {b}^{2} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\sf\blue{Solution:-}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \sf{ \frac{3 + 2 \sqrt{2} }{3 -  \sqrt{2} }  = } \sf \blue{ \: a   \: + \: b \sqrt{2}  }

 \sf{ \frac{3 + 2 \sqrt{2} }{3 -  \sqrt{2}  }  \times  \frac{3 +  \sqrt{2} }{3 +  \sqrt{2} }  = } \sf \blue{ \: a   \: + \: b \sqrt{2}  }

 \sf{ \frac{(3 + 2 \sqrt{2} )(3 +  \sqrt{2} )}{ {(3)}^{2}  -  (  \sqrt{2})^{ \cancel2}    }  = } \sf \blue{ \: a   \: + \: b \sqrt{2}  }

 \sf{ \frac{3(3 +  \sqrt{2}) + 2 \sqrt{2} (3 +  \sqrt{2})  }{3 - 2  }  = } \sf \blue{ \: a   \: + \: b \sqrt{2}  }

 \sf{ \frac{9 +  3\sqrt{2} + 6 \sqrt{2} +  2 {( \sqrt{2}) }^{2}   }{3 - 2  }  = } \sf \blue{ \: a   \: + \: b \sqrt{2}  }

 \sf{ \frac{9 +  9 \sqrt{2}  + 4 }{1 }  = } \sf \blue{ \: a   \: + \: b \sqrt{2}  }

 \sf{ 13 + 9 \sqrt{2}   = } \sf \blue{ \: a   \: + \: b \sqrt{2}  }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \sf{Comparing \: Values}

 \sf \blue{a = 13 }

 \sf \blue{b =9 }

Answered by twinklingstar19
8

Step-by-step explanation:

Given :-

2x² - 4x + 5

To Find :-

1/α + 1/β

(α - β)²

Solution :-

We know that

Sum of zeroes = -b/a

Here

b = -4

a = 2

-(-4)/2

4/2

2/1

2

Product of zeroes = c/a

c = 5

a = 2

5/2

Now

1/α + 1/β = α + β/αβ

= 2/(5/2)

= 2/5 × 2/1

= 4/5

b)

We know that

(α - β)² = (α + β)² - 4αβ

(2)² - 4(5/2)

4 - 20/2

8 - 20/2

-12/2

-6

Similar questions