Explain lanthanide contraction and give its consequences.
Answers
Answer:
The lanthanide contraction is the greater-than-expected decrease in ionic radii of the elements in the lanthanide series from atomic number 57, lanthanum, to 71, lutetium, which results in smaller than otherwise expected ionic radii for the subsequent elements starting with 72, hafnium. The term was coined by the Norwegian geochemist Victor Goldschmidt in his series "Geochemische Verteilungsgesetze der Elemente".
The effect results from poor shielding of nuclear charge (nuclear attractive force on electrons) by 4f electrons; the 6s electrons are drawn towards the nucleus, thus resulting in a smaller atomic radius.
In single-electron atoms, the average separation of an electron from the nucleus is determined by the subshell it belongs to, and decreases with increasing charge on the nucleus; this in turn leads to a decrease in atomic radius. In multi-electron atoms, the decrease in radius brought about by an increase in nuclear charge is partially offset by increasing electrostatic repulsion among electrons. In particular, a "shielding effect" operates: i.e., as electrons are added in outer shells, electrons already present shield the outer electrons from nuclear charge, making them experience a lower effective charge on the nucleus. The shielding effect exerted by the inner electrons decreases in the order s > p > d > f.
Thanks for the question.
Hope it helps you.