Math, asked by 77Z, 1 month ago

explain process
not answers
plis

Attachments:

Answers

Answered by Anonymous
2

Solution :-

 \implies\left[\left\{\left(-\dfrac{2}{5}\right)^2\right\}^{-2}\right]^{-1}

Simplifying the innermost bracket by just squaring the terms.

 \implies\left[\left\{\left(-\dfrac{2}{5}\right)^2\right\}^{-2}\right]^{-1}

 \implies\left[\left\{\dfrac{( -  2)^{2} }{ {5}^{2} }\right\}^{-2}\right]^{-1}

 \implies\left[\left\{\dfrac{4 }{ 25 }\right\}^{-2}\right]^{-1}

Simplifying the innermost bracket by squaring of reciprocal. negative power means power of reciprocal.

Inorder to make power positive, we just reciprocate the fraction.

 \implies\left[\left\{\dfrac{4 }{ 25 }\right\}^{-2}\right]^{-1}

 \implies\left[\left\{\dfrac{25 }{4}\right\}^{2}\right]^{-1}

 \implies\left[\dfrac{ {(25)}^{2}  }{ {(4)}^{2} }\right]^{-1}

 \implies\left[\dfrac{ 625 }{16}\right]^{-1}

Again, the power is negative, so we just have to reciprocate the fraction to make power positive.

 \implies\left[\dfrac{ 625 }{16}\right]^{-1}

 \implies\dfrac{16}{625}

Therefore, the required answer is,

 \boxed{ \left[\left\{\left(-\dfrac{2}{5}\right)^2\right\}^{-2}\right]^{-1} =  \dfrac{16}{625} }

Similar questions