Explain shm derivation on kinetic energy and potential energy at any instant
Answers
Answer:Each and every object possesses energy, either while moving or at rest. In the simple harmonic motion, the object moves to and fro along the same path. Do you think an object possesses energy while travelling the same path again and again? Yes, it is energy in simple harmonic motion. Let’s learn how to calculate this energy and understand its properties.
The total energy that a particle possesses while performing simple harmonic motion is energy in simple harmonic motion. Take a pendulum for example. When it is at its mean position, it is at rest. When it moves towards its extreme position, it is in motion and as soon as it reaches its extreme position, it comes to rest again. Therefore, in order to calculate the energy in simple harmonic motion, we need to calculate the kinetic and potential energy that the particle possesses.
Answer:
a) purely kinetic. At the mean position, the velocity of the particle in S.H.M. is maximum and displacement is minimum, that is, x=0. Therefore, P.E. =1/2 K x2 = 0 and K.E. = 1/2 k ( a2 – x2) = 1/2 k ( a2 – o2) = 1/2 ka2. Thus, the total energy in simple harmonic motion is purely kineti
Explanation: