Math, asked by poonamnegi3071, 3 months ago

explain step by step​

Attachments:

Answers

Answered by mathdude500
2

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

 :  \implies \:  \tt \: \tt \:\lim_{x\to0} \: \dfrac{sinx}{x}  = 1

 :  \implies \:  \tt \: \tt \:\lim_{x\to0}\dfrac{ {a}^{x}  - 1}{x}  =  log(a)

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

 :  \implies \:  \tt \: \:\lim_{x\to0}\dfrac{ {4}^{x}  +  {4}^{ - x}  -  2 }{x \: sinx}

☆ On substituting directly the value of x, we get indeterminant form

   = \tt \: \:\lim_{x\to0}\dfrac{ {4}^{x} + \dfrac{1}{ {4}^{x} }     - 2}{x}  \times \:\lim_{x\to0}\dfrac{1}{\dfrac{sinx}{x}  \times x}

 =  \tt \: \:\lim_{x\to0}\dfrac{ {4}^{2x} + 1 - 2 \times  {4}^{x}  }{ {x}^{2}  \times  {4}^{x} }  \times \:\lim_{x\to0}\dfrac{x}{sinx}

 =  \tt\:\lim_{x\to0}\dfrac{1}{ {4}^{x} }  \times \:\lim_{x\to0} \dfrac{ {( {4}^{x}  - 1)}^{2} }{ {x}^{2} }  \times 1

 =  \tt \:1 \times  \:\lim_{x\to0}\dfrac{ {4}^{x} - 1 }{x}  \times \:\lim_{x\to0}\dfrac{ {4}^{x} - 1 }{x}

  \tt \:  =  log(4)  \times  log(4)

\tt\implies \: =  {( log(4)) }^{2}

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions