Math, asked by poonamnegi3071, 2 months ago

explain step by step​

Attachments:

Answers

Answered by mathdude500
3

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

(1). \:  \boxed{ \red{\tt \:\lim_{x\to0} \: \dfrac{tan \: x}{x}  = 1}}

(2). \:  \boxed{ \red{\tt \:\lim_{x\to0} \: \dfrac{sin \: x}{x}  = 1}}

(3). \:  \boxed{ \red{\tt \:1 - cos2x =  {2sin}^{2}x }}

\large\underline\purple{\bold{Solution :-  }}

\tt \:\lim_{x\to0}\dfrac{ {x}^{2} + 1 - cosx }{x \: tanx}

☆ If we substitute directly x = 0, we get indeterminant form

 = \tt \:\lim_{x\to0}\dfrac{ {x}^{2}  + (1 - cosx)}{x \times  \: \dfrac{tanx}{x}  \times x}

 = \tt \:\lim_{x\to0}\dfrac{ {x}^{2} + 2 {sin}^{2}\dfrac{x}{2}   }{ {x}^{2} }  \times \tt \:\lim_{x\to0}\dfrac{1}{\dfrac{tanx}{x} }

 = \tt \:\lim_{x\to0}\dfrac{ {x}^{2} + 2 {sin}^{2}\dfrac{x}{2}   }{ {x}^{2} }  \times 1

 = \tt \:\tt \:\lim_{x\to0}\dfrac{ {x}^{2} }{ {x}^{2} }  + \lim_{x\to0}\dfrac{ 2 {sin}^{2}\dfrac{x}{2}   }{ {x}^{2} }

\tt \:  = 1 \:  +  \:  \tt \:\lim_{x\to0}\dfrac{ 2 {sin}^{2}\dfrac{x}{2}   }{ \dfrac{ {x}^{2} }{4}  \times 4}

\tt \:  = 1 \:  +  \:  \tt \:\dfrac{1}{2} \lim_{x\to0}\dfrac{  {sin}^{2}\dfrac{x}{2}   }{ \dfrac{ {x}^{2} }{4} }

\tt \:   = 1 + \dfrac{1}{2}  \times  {(1)}^{2}

\tt \:   = \dfrac{3}{2}

\tt\implies \:\:  \boxed{ \red{\tt \:\lim_{x\to0} \: \tt \:\dfrac{ {x}^{2} + 1 - cosx }{x \: tanx}  =  \: \dfrac{3}{2} }}

Similar questions