Math, asked by opfreefire352, 12 hours ago

Explain step by step​

Attachments:

Answers

Answered by amansharma264
9

EXPLANATION.

⇒ (x + 1/x) = 5.

As we know that,

Squaring on both sides of the equation, we get.

⇒ (x + 1/x)² = (5)².

As we know that,

Formula of :

⇒ (a + b)² = a² + b² + 2ab.

Using this formula in the equation, we get.

⇒ (x)² + (1/x)² + 2(x)(1/x) = 25.

⇒ x² + 1/x² + 2 = 25.

⇒ x² + 1/x² = 25 - 2.

x² + 1/x² = 23.

Answered by as3801504
9

Answer:

{\implies}{ \boxed{\mathbb{\red{given \: that  }}}}\\ x +  \frac{1}{x} = 5 \:  \:  - (1) \\  find \\  {x}^{2}  +  \frac{1}{x {}^{2} }  \\ {\implies}{ {\mathbb{\blue{squarring \: both \: side \: in \: equation \: (1) }}}}\\ (x +  \frac{1}{x} ) {}^{2}  = (5) {}^{2}  \\ using \: identity  \\ \:{\implies}{ \boxed{\mathbb{\pink{( a + b) {}^{2}  = a {}^{2}  + b {}^{2}  + 2ab \: \: we \: get}}}} \\(5) { }^{2} =  x {}^{2}  +  \frac{1}{x {}^{2} }  + 2 \times x \times  \frac{1}{x}  \\ 25 =  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \\ 25 - 2 =  {x}^{2}  +  \frac{1}{ {x}^{2} }  \\ {\implies}{{\mathbb{\green{23 =  {x}^{2}  +  \frac{1}{ {x}^{2} } }}}}

Step-by-step explanation:

Similar questions