Math, asked by lalit4286, 7 months ago

Explain that the gravitational acceleration value is 9.8.​

Answers

Answered by Joker444
7

Explanation :

A free fall body of mass (m) from a distance (R) From the centre of the earth of mass (M), then the gravitational force between the earth and the body Is :-

\sf \:g =  \frac{GM}  {{R}^{2} }  \\

  • Value of G = 6.67 × 10-11Nm²/kg²
  • m = 6 × 16²⁴kg
  • R = 6.4 × 10⁶m

 \sf \: g =  \frac{6 .67 \times  {10}^{ - 11} \times 6 \times 10 {}^{24}  }{(6.4 \times 10 {}^{6} ) {}^{2} }  \\ \\  \sf \:  =  \frac{6.67 \times 6 \times  {10}^{13} }{6.4 \times 6.4 \times  {10}^{12} }  \\  \\ \sf \:  =  \frac{6.67 \times 6 \times  {10}^{13 - 12} }{6.4 \times 6.4}  \\  \\ \sf \:  =  \frac{6.67 \times 6 \times 10}{6.4 \times 6.4}  \\  \\  \:  =   \red{\boxed{ \sf \: 9.8m /  {sec}^{2} }}

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by ItzCandyClause80
1

Explanation :

A free fall body of mass (m) from a distance (R) From the centre of the earth of mass (M), then the gravitational force between the earth and the body Is :-

\begin{gathered}\sf \:g = \frac{GM} {{R}^{2} } \\\end{gathered}

g=

R

2

GM

Value of G = 6.67 × 10-11Nm²/kg²

m = 6 × 16²⁴kg

R = 6.4 × 10⁶m

\begin{gathered}\sf \: g = \frac{6 .67 \times {10}^{ - 11} \times 6 \times 10 {}^{24} }{(6.4 \times 10 {}^{6} ) {}^{2} } \\ \\ \sf \: = \frac{6.67 \times 6 \times {10}^{13} }{6.4 \times 6.4 \times {10}^{12} } \\ \\ \sf \: = \frac{6.67 \times 6 \times {10}^{13 - 12} }{6.4 \times 6.4} \\ \\ \sf \: = \frac{6.67 \times 6 \times 10}{6.4 \times 6.4} \\ \\ \: = \red{\boxed{ \sf \: 9.8m / {sec}^{2} }}\end{gathered}

g=

(6.4×10

6

)

2

6.67×10

−11

×6×10

24

=

6.4×6.4×10

12

6.67×6×10

13

=

6.4×6.4

6.67×6×10

13−12

=

6.4×6.4

6.67×6×10

=

9.8m/sec

2

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions