Physics, asked by manali53, 10 months ago

explain the answer. ​

Attachments:

Answers

Answered by sammane2514
1

Answer:

i).

A =   7.935853753

ii).

 \delta = 54.38510262 degree \\  \delta =   \frac{\pi}{3.30973} rads

Explanation:

A]

Given: \\ x1 = 5 \sin(4\pit +  \frac{\pi}{3} ) \\  x2 = 3 \sin(4\pit +  \frac{\pi}{4} )

When two waves are superimposed resultant Amplitude is given by:

A =   \sqrt{ {a1}^{2}  +  {a2}^{2} + 2(a1)(a2) \cos( \alpha 1 -  \alpha 2)  }

Where;

 a1 and a2 are amplitude of x1 and x2 respectively. \\  \alpha 1 \: and \:  \alpha 2 \: are phase angle of x1 and x2 respectively.

Here,

a1 = 5 \: and \: a2 = 3 \\  \alpha 1 =   \frac{\pi}{3}  \: and \:  \alpha 2 =  \frac{\pi}{4}

Therefore,

A =  \sqrt{ {5}^{2}  +  {3}^{2}  + 2(5)(3) \cos(( \frac{\pi}{3}) - ( \frac{\pi}{4})  )  } \\ A = 7.935853753

B].

Now for superimposed waves resultant epoch is given as:

 \delta =  {tan}^{ - 1}  ( \frac{a1 \sin( \alpha 1) + a2 \sin( \alpha 2)  }{a1 \cos( \alpha 1) + a2c  \cos( \alpha 2)  } )

 \delta =  {tan}^{ - 1}  ( \frac{5 \sin( \frac{\pi}{3} ) + 3 \sin( \frac{\pi}{4} )  }{5 \cos( \frac{\pi}{3} ) + 3 \cos( \frac{\pi}{4} )  } )

 \delta =  {tan}^{ - 1} (1.39608212) \\  \delta = 54.38510262 \: degree \\  \delta =  \frac{\pi}{3.309729895} rads

Similar questions