Explain the answer. Don't spam.
Answers
QUESTION:
Let S = 3 + 55 + 333 + 5555 + 33333 + ........upto 22 terms. If 9S + 88 = A(10²² - 1), then A is
ANSWER:
- OPTION 2) 530/99
GIVEN:
- S = 3 + 55 + 333 + 5555 + 33333 + ........upto 22 terms
- 9S + 88 = A(10²² - 1)
TO FIND:
- The value of A.
EXPLANATION:
Split the two terms
S = (3 + 333 + 33333 .... upto 11 terms) + (55 + 5555 + 555555 + .......upto 11 terms)
Let 3 + 333 + 33333 .... upto 11 terms = P
Let 55 + 5555 + 555555 + .......upto 11 terms = Q
S = P + Q
P = 3 + 333 + 33333 .... upto 11 terms
Take 3 as common
P = 3(1 + 111 + 11111 + ....11 terms)
Multiply and divide by 9
P = 3/9(9 + 999 + 99999 + ....11 terms)
P = 3/9(10 - 1 + 1000 - 1 + 100000 - 1 + ....11 terms)
Again split the terms
P = 3/9[(10 + 1000 + 100000 + ....11 terms) - ( 1 + 1 + 1 + .... 11 terms)]
(10 + 1000 + 100000 + ....11 terms) is in G.P.
r = t₂ / t₁ = 1000 / 10 = 100
a = 10
n = 11
S₁₁ = 10(100¹¹ - 1) / 100 - 1
100¹¹ = 10²² as 100 = 10²
S₁₁ = 10(10²² - 1) / 99
(1 + 1 + 1 + .... 11 terms) are also in G.P.
All the 11 terms are same
a = 1
n = 11
Substitute the values which we found.
P = 3/9[(10(10²² - 1) / 99) - 11]
By taking L.C.M
P = 3/891[(10(10²² - 1) - 1089]
Q = 55 + 5555 + 555555 .... upto 11 terms
Take 5 as common
Q = 5(11 + 1111 + 111111 + ....11 terms)
Multiply and divide by 9
Q = 5/9(99 + 9999 + 999999 + ....11 terms)
Q = 5/9(100 - 1 + 10000 - 1 + 1000000 - 1 + ....11 terms)
Again split the terms
Q = 5/9[(100 + 10000 + 1000000 + ....11 terms) - ( 1 + 1 + 1 + .... 11 terms)]
(100 + 10000 + 1000000 + ....11 terms) is in G.P.
r = t₂ / t₁ = 10000 / 100 = 100
a = 100
n = 11
S₁₁ = 100(100¹¹ - 1) / 100 - 1
100¹¹ = 10²² as 100 = 10²
S₁₁ = 100(10²² - 1) / 99
(1 + 1 + 1 + .... 11 terms) are also in G.P.
All the 11 terms are same
a = 1
n = 11
Substitute the values which we found
Q = 5/9[(10(10²² - 1) / 99) - 11]
By taking L.C.M
Q = 5/891[(100(10²² - 1) - 1089]
S = P + Q
P + Q = 3/891[(10(10²² - 1) - 1089] + 5/891[(100(10²² - 1) - 1089]
S = 1/891(30(10²² - 1) - 3267 + 500(10²² - 1) - 5445)
9/891(30(10²² - 1) + 500(10²² - 1) - 8712) + 88 = A(10²² - 1)
1/99(30(10²² - 1) + 500(10²² - 1) - 8712) + 88 = A(10²² - 1)
Take (10²² - 1) as common.
1/99((10²² - 1) (30 + 500) - 8712) + 88 = A(10²² - 1)
1/99(530(10²² - 1) - 8712) + 88 = A(10²² - 1)
530/99(10²² - 1) - 8712/99 + 88 = A(10²² - 1)
530/99(10²² - 1) - 88 + 88 = A(10²² - 1)
530/99(10²² - 1) = A(10²² - 1)
Cancel (10²² - 1) on both sides.
530/99 = A