Physics, asked by rajendrasahaniln424, 3 months ago

explain the combination of resistors.
1) series connection
2) parallel connection​

Answers

Answered by prema060330
1

Answer:

There are two types of circuits, series and parallel. In series connection, the current flows only through one path will be the same when passing through each resistor. In parallel connection, the voltage remains the same across each resistors in the circuit and the current is divided among each branches.

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
16

Series Connection :-

  • In a series connection the resistors are connected along the same path.
  • The current that flows accross each resistor is the same.
  • The Potential different accross each resistor varies.
  • Rₙₑₜ = R₁ + R₂ + Rₙ

\setlength{\unitlength}{1 cm}\begin{picture}(20,15)\thicklines\qbezier(1,1)(1,1)(1,5)\qbezier(1,1)(1,1)(3,1)\qbezier(3,0.5)(3,0.5)(3,1.5)\qbezier(3.2,0.7)(3.2,0.7)(3.2,1.3)\qbezier(3.4,0.5)(3.4,0.5)(3.4,1.5)\qbezier(3.6,0.7)(3.6,0.7)(3.6,1.3)\qbezier(3.8,0.5)(3.8,0.5)(3.8,1.5)\qbezier(4,0.7)(4,0.7)(4,1.3)\qbezier(4,1)(4,1)(11,1)\qbezier(11,1)(11,1)(11,5.1)\qbezier(1,5)(1,5)(1.6,5)\qbezier(1.6,5)(1.6,5)(1.8,5.4)\qbezier(1.8,5.4)(1.8,5.4)(2,4.8)\qbezier(2,4.8)(2,4.8)(2.2,5.4)\qbezier(2.2,5.4)(2.2,5.4)(2.4,4.8)\qbezier(2.4,4.8)(2.4,4.8)(2.6,5.4)\qbezier(2.6,5.4)(2.6,5.4)(2.8,4.8)\qbezier(2.8,4.8)(2.8,4.8)(2.9,5.1)\qbezier(2.9,5.1)(2.9,5.1)(3.5,5.1)\qbezier(3.5,5.1)(3.5,5.1)(3.7,5.4)\qbezier(3.7,5.4)(3.7,5.4)(3.9,4.8)\qbezier(3.9,4.8)(3.9,4.8)(4.1,5.4)\qbezier(4.1,5.4)(4.1,5.4)(4.3,4.8)\qbezier(4.3,4.8)(4.3,4.8)(4.5,5.4)\qbezier(4.5,5.4)(4.5,5.4)(4.7,4.8)\qbezier(4.7,4.8)(4.7,4.8)(4.8,5.1)\qbezier(4.8,5.1)(4.8,5.1)(5.5,5.1)\qbezier(5.5,5.1)(5.5,5.1)(5.7,5.4)\qbezier(5.7,5.4)(5.7,5.4)(5.9,4.8)\qbezier(5.9,4.8)(5.9,4.8)(6.1,5.4)\qbezier(6.1,5.4)(6.1,5.4)(6.3,4.8)\qbezier(6.3,4.8)(6.3,4.8)(6.5,5.4)\qbezier(6.5,5.4)(6.5,5.4)(6.7,4.8)\qbezier(6.7,4.8)(6.7,4.8)(6.8,5.1)\qbezier(6.8,5.1)(6.8,5.1)(11,5.1)\put(3,1){\vector(-1,0){1}}\put(1.9,5.8){$\sf R_1 $}\put(3.9,5.8){$\sf R_2 $}\put(5.9,5.8){$\sf R_3 $}\put(2.1,0.5){\sf I }\put(3.4,-0.3){\sf V }\end{picture}

Parallel Connection :-

  • In a parallel connection the resistors are connected along different path.
  • The current that flows accross each resistor varies.
  • The Potential different accross each resistor is the same.
  • 1/Rₙₑₜ = 1/R₁ + 1/R₂ + 1/Rₙ

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(6.5,0){2}{\line(0,1){3}}\put(0,3){\line(1,0){1}}\put(5.5,3){\line(1,0){1}}\put(0,0){\line(1,0){3}}\put(3.3,0){\line(1,0){3.2}}\put(3.2,1.5){\sf R}\put(3.2,4.4){\sf R}\put(1.5,3.9){\sf I_1$}\put(1.5,2){\sf I_2$}\put(3,-0.8){\sf\large V}\qbezier(1,3)(1,3)(2.7,4)\qbezier(5.5,3)(5.5,3)(4,4)\qbezier(1,3)(1,3)(2.7,2)\qbezier(5.5,3)(5.5,3)(4,2)\multiput(2.7,4)(0.42,0){3}{\line(1, - 2){0.2}}\multiput(2.9,3.6)(0.42,0){3}{\line(2, 5){0.19}}\multiput(2.9,2.4)(0.42,0){3}{\line(1, - 2){0.2}}\multiput(2.7,2)(0.42,0){3}{\line(2, 5){0.19}}\multiput(0,1.5)(6.3,0){2}{\line(1, - 2){0.2}}\multiput( - 0.2, 1.1)(6.7,0){2}{\line(2, 5){0.19}}\put(3, - 0.3){\line(0, 1){0.6}}\put(3.25, - 0.2){\line(0, 1){0.4}}\multiput(0.4, 1.1)(6.5,0){2}{\sf{I}}\end{picture}

Similar questions