Math, asked by lavpanduh, 1 year ago

Explain the compound interest and Simple interest Topics with Exampls?

Answers

Answered by Aditiy
1
in the simple interest if the principal is 100 rupees and the rate is 10% and time in 2 years then it will be p*r*t/100 but in the compound interest we have to pay the interest on the principle means, for 2 years we have do .p*r*t/100 and then the the coming answer will be considered as the principal so it will become P*r*t/100.

lavpanduh: thank you ! but do u know the different kind of scenarios on this .
Aditiy: noooo
lavpanduh: okay thank u
Answered by shaider
1

Compound interest is calculated by multiplying the initial principal amount by one plus the annual interest rate raised to the number of compound periods minus one.

According to formula,

According to formula,An = P( 1 +r/100)

According to formula,An = P( 1 +r/100)Where A is total amount after n years, r is the rate. P is the amount initially

According to formula,An = P( 1 +r/100)Where A is total amount after n years, r is the rate. P is the amount initiallyAn =10, 000( 1 + 10/100)

According to formula,An = P( 1 +r/100)Where A is total amount after n years, r is the rate. P is the amount initiallyAn =10, 000( 1 + 10/100)=10,000( 1+0.1)"

According to formula,An = P( 1 +r/100)Where A is total amount after n years, r is the rate. P is the amount initiallyAn =10, 000( 1 + 10/100)=10,000( 1+0.1)"=10,000(1.1)

According to formula,An = P( 1 +r/100)Where A is total amount after n years, r is the rate. P is the amount initiallyAn =10, 000( 1 + 10/100)=10,000( 1+0.1)"=10,000(1.1)An =10,000(1.1)

According to formula,An = P( 1 +r/100)Where A is total amount after n years, r is the rate. P is the amount initiallyAn =10, 000( 1 + 10/100)=10,000( 1+0.1)"=10,000(1.1)An =10,000(1.1)now, put n = 1 A1 =10, 000(1.1), put n =2, A2 =10,000(1.1)2

According to formula,An = P( 1 +r/100)Where A is total amount after n years, r is the rate. P is the amount initiallyAn =10, 000( 1 + 10/100)=10,000( 1+0.1)"=10,000(1.1)An =10,000(1.1)now, put n = 1 A1 =10, 000(1.1), put n =2, A2 =10,000(1.1)2in the same way, A3 =10, 00(1.1)

According to formula,An = P( 1 +r/100)Where A is total amount after n years, r is the rate. P is the amount initiallyAn =10, 000( 1 + 10/100)=10,000( 1+0.1)"=10,000(1.1)An =10,000(1.1)now, put n = 1 A1 =10, 000(1.1), put n =2, A2 =10,000(1.1)2in the same way, A3 =10, 00(1.1)you can see that A2/A1 = A3/A2

According to formula,An = P( 1 +r/100)Where A is total amount after n years, r is the rate. P is the amount initiallyAn =10, 000( 1 + 10/100)=10,000( 1+0.1)"=10,000(1.1)An =10,000(1.1)now, put n = 1 A1 =10, 000(1.1), put n =2, A2 =10,000(1.1)2in the same way, A3 =10, 00(1.1)you can see that A2/A1 = A3/A2so, {An} is in Geometric progression.

According to formula,An = P( 1 +r/100)Where A is total amount after n years, r is the rate. P is the amount initiallyAn =10, 000( 1 + 10/100)=10,000( 1+0.1)"=10,000(1.1)An =10,000(1.1)now, put n = 1 A1 =10, 000(1.1), put n =2, A2 =10,000(1.1)2in the same way, A3 =10, 00(1.1)you can see that A2/A1 = A3/A2so, {An} is in Geometric progression.now,

According to formula,An = P( 1 +r/100)Where A is total amount after n years, r is the rate. P is the amount initiallyAn =10, 000( 1 + 10/100)=10,000( 1+0.1)"=10,000(1.1)An =10,000(1.1)now, put n = 1 A1 =10, 000(1.1), put n =2, A2 =10,000(1.1)2in the same way, A3 =10, 00(1.1)you can see that A2/A1 = A3/A2so, {An} is in Geometric progression.now,amount payable after 5years

According to formula,An = P( 1 +r/100)Where A is total amount after n years, r is the rate. P is the amount initiallyAn =10, 000( 1 + 10/100)=10,000( 1+0.1)"=10,000(1.1)An =10,000(1.1)now, put n = 1 A1 =10, 000(1.1), put n =2, A2 =10,000(1.1)2in the same way, A3 =10, 00(1.1)you can see that A2/A1 = A3/A2so, {An} is in Geometric progression.now,amount payable after 5yearsA5 =10,000(1.1)^5

According to formula,An = P( 1 +r/100)Where A is total amount after n years, r is the rate. P is the amount initiallyAn =10, 000( 1 + 10/100)=10,000( 1+0.1)"=10,000(1.1)An =10,000(1.1)now, put n = 1 A1 =10, 000(1.1), put n =2, A2 =10,000(1.1)2in the same way, A3 =10, 00(1.1)you can see that A2/A1 = A3/A2so, {An} is in Geometric progression.now,amount payable after 5yearsA5 =10,000(1.1)^5=16, 105.1 Rs

Similar questions