Biology, asked by Brainly100, 1 year ago

Explain the concept of DNA replication in detail.

How it occurs in microscopic level? And what is its relation with mutation?​

Answers

Answered by Anonymous
13

●Answer

☆DNA replication is the process by which DNA makes a copy of itself during cell division. 

☆The separation of the two single strands of DNA creates a ‘Y’ shape called a replication ‘fork’. The two separated strands will act as templates for making the new strands of DNA.

☆The result of DNA replication is two DNA molecules consisting of one new and one old chain of nucleotides. This is why DNA replication is described as semi-conservative, half of the chain is part of the original DNA molecule, half is brand new.

☆Ionizing radiation affects living things on an atomic level, by ionizing molecules inside the microscopic cells that make up your body.

☆When a mutation alters a protein that plays a critical role in the body, it can disrupt normal development or cause a medical condition. A condition caused by mutations in one or more genes is called a genetic disorder.


virat7870: hii anu
virat7870: Can we be friends??
Brainly100: Chatting is prohibited in comment section
k23: hi
Answered by Anonymous
1

Answer:

Abstract

The accurate copying of genetic information in the double helix of DNA is essential for inheritance of traits that define the phenotype of cells and the organism. The core machineries that copy DNA are conserved in all three domains of life: bacteria, archaea, and eukaryotes. This article outlines the general nature of the DNA replication machinery, but also points out important and key differences. The most complex organisms, eukaryotes, have to coordinate the initiation of DNA replication from many origins in each genome and impose regulation that maintains genomic integrity, not only for the sake of each cell, but for the organism as a whole. In addition, DNA replication in eukaryotes needs to be coordinated with inheritance of chromatin, developmental patterning of tissues, and cell division to ensure that the genome replicates once per cell division cycle.

The genetic information within the cells of our body is stored in the double helix of DNA, a long cylinderlike structure with a radius that is only 10 Å or one billionth of a meter but can be of considerable length. A single DNA molecule within a bacterium that grows in our gut flora is approximately 5 million base pairs in length and when stretched out, is about 1.6 mm in length, roughly the diameter of a pinhead. In contrast, the single DNA molecule in the largest human chromosome is 245,203,898 base pairs or about 8.33 cm long. The entire human genome, consisting of its 24 different chromosomes in a male is about 3 billion base pairs or 1 m long. Each cell in our body, with rare exceptions, contains two copies of the genome and thus 2 m of total DNA. Thus the scale and complexity of duplicating genomes is remarkable. For example, ∼2200 human cells can sit on the top of a 1.5 mm pinhead and when extracted and laid out in a line, the DNA from these cells would be ∼4.5 km (2.8 miles) long. In our body, about 500–700 million new blood cells are born every minute in the bone marrow (Doulatov et al. 2012), containing a total of about 1 million km of DNA, or enough DNA to wrap around the equator of the earth 25 times. Thus DNA replication is a serious business in our body, occurring from the time that a fertilized egg first begins duplicating DNA to yield the many trillions of cells that make up an adult body and continuing in all tissues of the adult body throughout our life. The amount of DNA duplicated in an entire human body represents an unimaginable amount of information transfer. Moreover, each round of duplication needs to be highly accurate, making one mistake in less than 100 million bases copied per cell division. How copying of the double helix occurs and how it is so highly accurate is the topic of this collection. Inevitably the processes of accurate copying of the genome can go awry, yielding mutations that affect our lives, and thus the collection outlines the disorders that accelerate human disease.

However, the problem of copying DNA is much more complicated than indicated above. The 2 m of DNA in each human cell is wrapped up with histone proteins within the cell’s nucleus that is only about 5 μm wide, presenting a compaction in DNA length of about 2 million-fold. How can the copying process deal with the fact that the DNA is wrapped around proteins and scrunched into a volume that creates a spatial organization problem of enormous magnitude? Not only is the DNA copied, but the proteins associated with the DNA need to be duplicated, along with all the chemical modifications attached to DNA and histones that greatly influence developmental patterning of gene expression. The protein machineries that replicate DNA and duplicate proteins within the chromosomes are some of the most complex and intriguing machineries known. Furthermore, the regulations of the processes are some of the most complex because they need to ensure that each DNA molecule in each chromosome is copied once, and only once each time before a cell divides. Errors in the regulation of DNA replication lead to accelerated mutation rates, often associated with increased rates of cancer and other diseases.

Similar questions